

1578 Highway 44 East, Suite 6 P.O. Box 369 Shepherdsville, KY 40165-0369 Phone (502) 955-4400 or (800) 516-4293 Fax (502) 543-4410 or (800) 541-4410

January 24, 2018

RECEIVED

JAN 2 5 2018

PUBLIC SERVICE COMMISSION

Gwen Pinson **Executive Director** Kentucky Public Service Commission 211 Sower Boulevard Frankfort, KY 40601

RE:

Notice of Height Change and FAA Approval Filing

PSC Case No.: 2017-00385

Site Name: Harned

Dear Director Pinson:

The enclosed filing is provided as a supplement to the application that is the subject of the above-referenced case. Please include this correspondence and attachments in the administrative case file for this matter.

Sincerely,

David A. Pike

Pike Legal Group, PLLC Attorney for Applicant

rid a Pelso

Enclosures

cc: Brittany H. Koenig

JAN 25 2018

COMMONWEALTH OF KENTUCKY BEFORE THE PUBLIC SERVICE COMMISSION

PUBLIC SERVICE COMMISSION

In the Matter of:

THE APPLICATION OF)
NEW CINGULAR WIRELESS PCS, LLC,)
A DELAWARE LIMITED LIABILITY COMPANY,)
D/B/A AT&T MOBILITY)
FOR ISSUANCE OF A CERTIFICATE OF PUBLIC) CASE NO.: 2017-00385
CONVENIENCE AND NECESSITY TO CONSTRUCT)
A WIRELESS COMMUNICATIONS FACILITY)
IN THE COMMONWEALTH OF KENTUCKY)
IN THE COUNTY OF BRECKINRIDGE)

SITE NAME: HARNED

NOTICE OF HEIGHT CHANGE AND FEDERAL AVIATION ADMINISTRATION ("FAA") APPROVAL

Comes New Cingular Wireless PCS, LLC, a Delaware limited liability company, d/b/a AT&T Mobility ("Applicant"), by counsel, and hereby provides the Commission with this Notice of the following:

- The Commission, by Order dated December 21, 2017, issued a CPCN authorizing Applicant to construct a proposed wireless communications facility, including an antenna tower not to exceed 320 feet in height.
- 2. Subsequent to filing the original application in the within case, Applicant has changed the antenna tower design to reduce the proposed tower height to a total height of 199 feet (195-foot tall tower, with an approximately 4-foot tall lightning arrestor attached at the top).
- 3. The proposed tower, as re-designed to reduce the total tower height, will be constructed in full compliance with the Commission's Order.

- 4. As a courtesy to the Commission and to update the case record, Applicant hereby amends the case file for this matter with a revised site development plan referencing the reduced tower height (attached hereto as **Exhibit B-1**) to replace **Exhibit B** to the original application.
- 5. As a courtesy to the Commission and to update the case record, Applicant hereby amends the case file for this matter with revised tower and foundation design plans referencing the reduced tower height (attached hereto as Exhibit C-1) to replace Exhibit C to the original application.
- 6. In fulfilment of the Commission's Order of December 21, 2017, Applicant hereby files the attached copy of the final decision issued by the Federal Aviation Administration ("FAA") for the subject tower (attached hereto as **Exhibit E-1)**, which decision references the reduced tower height.
- 7. As a courtesy to the Commission and to update the case record, Applicant hereby amends the case file for this matter with a revised approval referencing the reduced tower height issued by the Kentucky Airport Zoning Commission ("KAZC") (attached hereto as **Exhibit F-1**) to replace **Exhibit F** to the original application.

WHEREFORE Applicant, by counsel, respectfully requests for the Commission to update the case record for this matter in accordance with the foregoing information and accompanying exhibits.

Respectfully submitted,

Levid a Pelse

David A. Pike

Pike Legal Group, PLLC

1578 Highway 44 East, Suite 6

P. O. Box 369

Shepherdsville, KY 40165-0369

Telephone: (502) 955-4400

Telefax:

(502) 543-4410

Email: dpike@pikelegal.com

Attorney for New Cingular Wireless PCS, LLC

d/b/a AT&T Mobility

EXHIBIT B-1

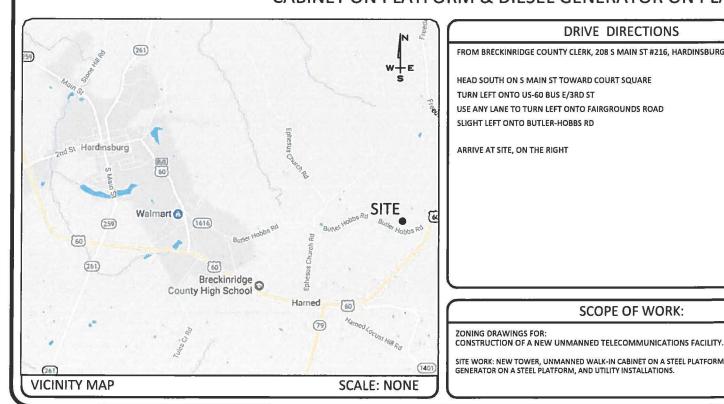
SITE DEVELOPMENT PLAN:

500' VICINITY MAP
LEGAL DESCRIPTIONS
FLOOD PLAIN CERTIFICATION
SITE PLAN
VERTICAL TOWER PROFILE

at&t

SITE NAME: **HARNED**

SITE NUMBER: KYL03659


354 FEET

1.6 MILES

0.6 MILES

2.6 MILES

PROPOSED RAW LAND SITE WITH NEW 195' SELF-SUPPORT TOWER WITH A 4' LIGHTNING ARRESTOR AND INSTALLATION OF AN 80" x 80" WALK-IN CABINET ON PLATFORM & DIESEL GENERATOR ON PLATFORM

DRIVE DIRECTIONS

FROM BRECKINRIDGE COUNTY CLERK, 208 S MAIN ST #216, HARDINSBURG, KY 40143:

HEAD SOUTH ON S MAIN ST TOWARD COURT SQUARE

USE ANY LANE TO TURN LEFT ONTO FAIRGROUNDS ROAD SLIGHT LEFT ONTO BUTLER-HOBBS RD

ARRIVE AT SITE, ON THE RIGHT

ZONING DRAWINGS FOR-

SCOPE OF WORK:

CONSTRUCTION OF A NEW UNMANNED TELECOMMUNICATIONS FACILITY.

GENERATOR ON A STEEL PLATFORM, AND UTILITY INSTALLATIONS.

TURN LEFT ONTO US-60 BUS E/3RD ST

PROJECT INFORMATION

COUNTY: BRECKINRIDGE

BUTLER HOBBS ROAD, SITE ADDRESS: HARNED KY, 40144

NEW CINGULAR WIRELESS PCS, LLC, APPLICANT: A DELAWARE LIMITED LIABILITY

COMPANY, D/B/A AT&T MOBILITY MEIDINGER TOWER 462 S. 4TH STREET, SUITE 2400 LOUISVILLE, KY 40202

LATITUDE: 37" 45' 52.73" LONGITUDE: 86° 23' 17.94"

1-800-752-6007

PER KENTUCKY STATE LAW, IT IS AGAINST THE LAW
TO EXCAVATE WITHOUT NOTIFYING THE UNDERGROUND LOCATION SERVICE TWO (2)

SHEET INDEX

TITLE SHEET & PROJECT INFORMATION

SURVEY B-1

SITE SURVEY B-1.1 B-1.2 SITE SURVEY

500' RADIUS AND ABUTTERS MAP B-2

OVERALL SITE LAYOUT OVERALL SITE LAYOUT -CONT'D **ENLARGED COMPOUND LAYOUT**

TOWER ELEVATION

CONTACT INFORMATION

FIRE DEPARTMENT HARNED VOLUNTEER FIRE DEPT. PHONE: (270) 756-2133

POLICE DEPARTMENT BRECKINRIDGE COUNTY SHERIFF'S DEPT.

PHONE: (270) 756-2361

ELECTRIC COMPANY MEADE COUNTY RECC PHONE: (270) 756-5172

TELEPHONE COMPANY

PHONE: (800) 288-2020

BUILDING CODES AND STANDARDS

CONTRACTOR'S WORK SHALL COMPLY WITH ALL APPLICABLE NATIONAL, STATE AND LOCAL CODES AS ADOPTED BY THE LOCAL AUTHORITY HAVING JURISDICTION

CONTRACTOR'S WORK SHALL COMPLY WITH THE LATEST **EDITION OF THE FOLLOWING STANDARDS:**

AMERICAN CONCRETE INSTITUTE 318

AMERICAN INSTITUTE OF STEEL CONSTRUCTION MANUAL OF STEEL CONSTRUCTION

TELECOMMUNICATIONS INDUSTRY ASSOCIATION TIA-222

STRUCTURAL STANDARDS FOR STEEL ANTENNA TOWER AND SUPPORTING STRUCTURES TIA-601

COMMERCIAL BUILDING GROUNDING AND BONDING REQUIREMENTS FOR TELECOMMUNICATIONS

INSTITUTE FOR ELECTRICAL AND ELECTRONICS ENGINEERS IEEE-81, IEEE 1100, IEEE C62.41

ANSI T1.311, FOR TELECOM - DC POWER SYSTEMS -TELECOM, ENVIRONMENTAL PROTECTION

2014 KBC

2014 NFC

FOR ANY CONFLICTS BETWEEN SECTIONS OF LISTED CODES AND STANDARDS, THE MOST RESTRICTIVE REQUIREMENT SHALL GOVERN.

11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299 502-437-5252 «MasTec

EN PERMIT: 3594

ZONING **DRAWINGS**

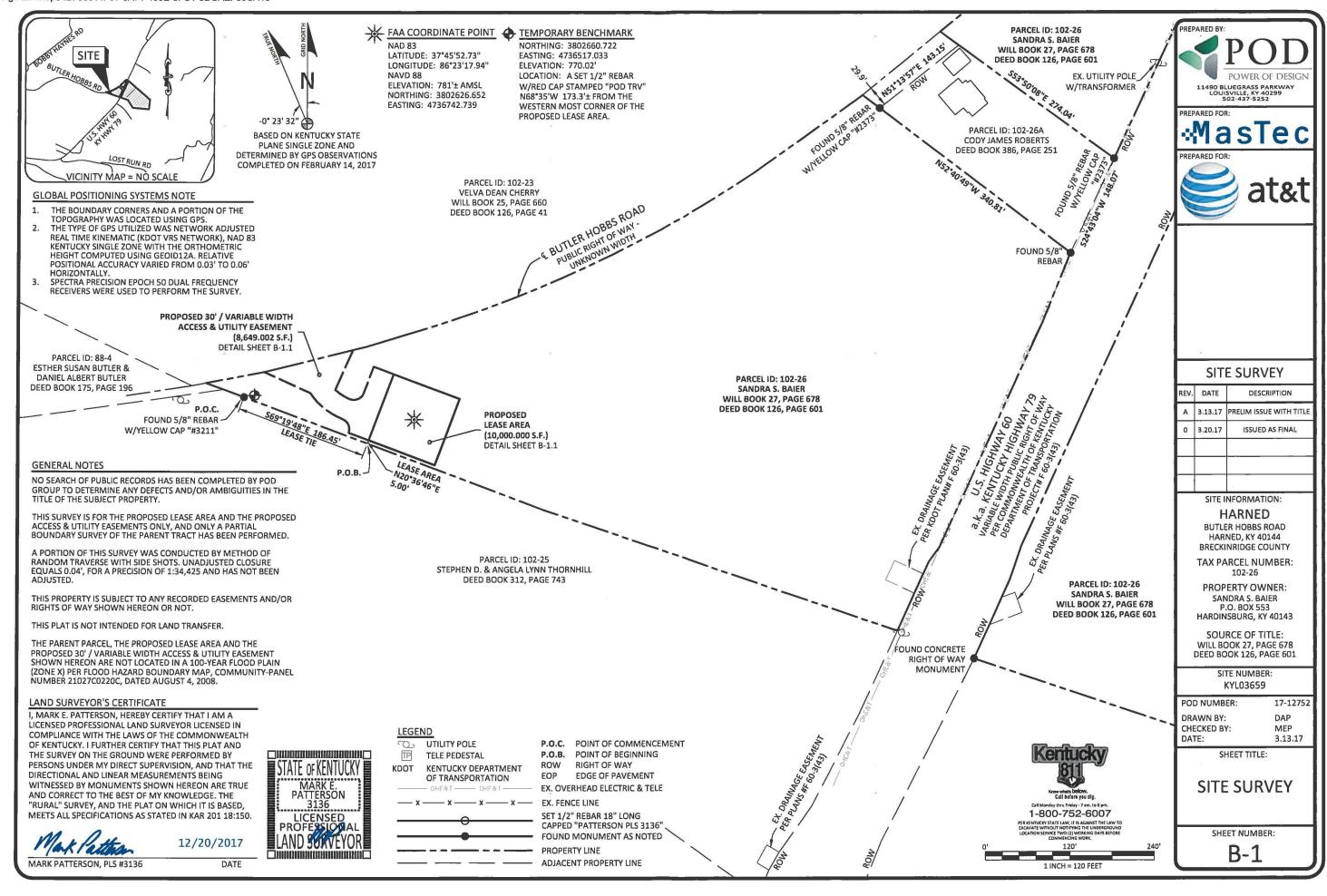
REV	DATE	DESCRIPTION
Α	7.6.17	ISSUED FOR REVIEW
0	7.10.17	ISSUED AS FINAL
1	9.19.17	TOWER DESIGN
2	12.20.17	TOWER HEIGHT

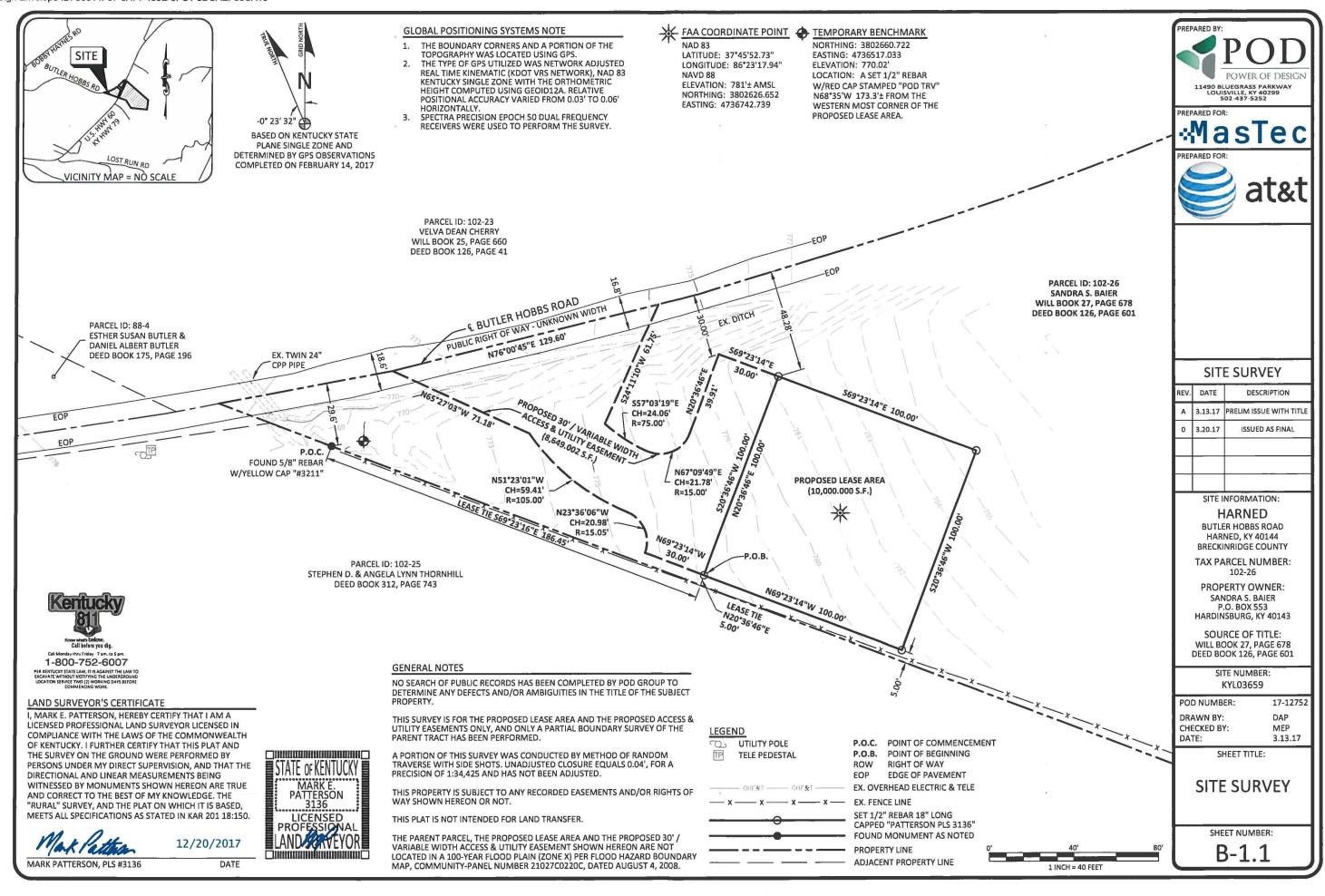
SITE INFORMATION

HARNED BUTLER HOBBS ROAD, HARNED KY, 40144

BRECKINRIDGE COUNTY

SITE NUMBER KYL03659


POD NUMBER: 17-12750


DRAWN BY: KDP CHECKED BY: 4.12.17

SHEET TITLE:

TITLE SHEET & PROJECT **INFORMATION**

SHEET NUMBER:

LEGAL DESCRIPTIONS

PROPOSED LEASE AREA

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED LEASE AREA TO BE LEASED FROM THE PROPERTY CONVEYED TO SANDRA S. BAIER AS RECORDED DEED BOOK 126, PAGE 601 (ACQUIRED THROUGH WILL BOOK 27, PAGE 678), PARCEL ID: 102-26, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME KINEMATIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON FEBRUARY 14, 2017.

COMMENCING AT A FOUND 5/8" REBAR WITH YELLOW CAP STAMPED "#3211" IN THE COMMON BOUNDARY LINE OF THE PROPERTY CONVEYED TO SANDRA S. BAIER AS RECORDED DEED BOOK 126, PAGE 601 (ACQUIRED THROUGH WILL BOOK 27, PAGE 678) AND THE PROPERTY CONVEYED TO STEPHEN D. & ANGELA LYNN THORNHILL AS RECORDED IN DEED BOOK 312, PAGE 743, SAID REBAR IS APPROXIMATELY 29.6' FROM THE APPROXIMATE CENTERLINE OF BUTLER HOBBS ROAD; THENCE WITH SAID COMMON BOUNDARY LINE OF BAIER AND THORNHILL, S69°19'48"E 186.45' TO A POINT; THENCE LEAVING SAID COMMON BOUNDARY LINE AND TRAVERSING THE LAND OF SAID BAIER, N20°36'46"E 5.00' TO A SET 1/2" REBAR 18" LONG CAPPED "PATTERSON PLS 3136", HEREAFTER REFERRED TO AS A "SET IPC" IN THE SOUTHWEST CORNER OF THE PROPOSED LEASE AREA AND BEING THE TRUE POINT OF BEGINNING; THENCE N20°36'46"E 100.00' TO A SET IPC; THENCE S69°23'14"E 100.00' TO A SET IPC; THENCE S20°36'46"W 100.00' TO A SET IPC; THENCE N69°23'14"W 100.00' TO THE POINT OF BEGINNING CONTAINING 10,000.000 SQUARE FEET AS PER SURVEY BY MARK E. PATTERSON, PLS #3136 DATED FEBRUARY 14. 2017.

PROPOSED 30' / VARIABLE WIDTH ACCESS & UTILITY EASEMENT

THE FOLLOWING IS A DESCRIPTION OF THE PROPOSED 30' / VARIABLE WIDTH ACCESS & UTILITY EASEMENT TO BE GRANTED FROM THE PROPERTY CONVEYED TO SANDRA S. BAIER AS RECORDED DEED BOOK 126, PAGE 601 (ACQUIRED THROUGH WILL BOOK 27, PAGE 678), PARCEL ID: 102-26, WHICH IS MORE PARTICULARLY DESCRIBED AS FOLLOWS:

BEARING DATUM USED HEREIN IS BASED UPON KENTUCKY STATE PLANE COORDINATE SYSTEM, SINGLE ZONE, NAD 83, FROM A REAL TIME KINEMATIC GLOBAL POSITIONING SYSTEM OBSERVATION USING THE KENTUCKY TRANSPORTATION CABINET REAL TIME GPS NETWORK COMPLETED ON FEBRUARY 14. 2017.

COMMENCING AT A FOUND 5/8" REBAR WITH YELLOW CAP STAMPED "#3211" IN THE COMMON BOUNDARY LINE OF THE PROPERTY CONVEYED TO SANDRA S. BAIER AS RECORDED DEED BOOK 126, PAGE 601 (ACQUIRED THROUGH WILL BOOK 27, PAGE 678) AND THE PROPERTY CONVEYED TO STEPHEN D. & ANGELA LYNN THORNHILL AS RECORDED IN DEED BOOK 312, PAGE 743, SAID REBAR IS APPROXIMATELY 29.6' FROM THE APPROXIMATE CENTERLINE OF BUTLER HOBBS ROAD; THENCE WITH SAID COMMON BOUNDARY LINE OF BAIER AND THORNHILL, S69*19'48"E 186.45' TO A POINT; THENCE LEAVING SAID COMMON BOUNDARY LINE AND TRAVERSING THE LAND OF SAID BAIER, N20°36'46"E 5.00' TO A SET 1/2" REBAR 18" LONG CAPPED "PATTERSON PLS 3136", HEREAFTER REFERRED TO AS A "SET IPC" IN THE SOUTHWEST CORNER OF THE PROPOSED 30' / VARIABLE WIDTH ACCESS AND UTILITY EASEMENT AND BEING THE TRUE POINT OF BEGINNING; THENCE LEAVING SAID LEASE AREA, N69°23'14"W 30.00'; THENCE WITH THE CHORD OF A NON-TANGENT CURVE TO THE LEFT HAVING A RADIUS OF 15.05', N23°36'06"W 20.98"; THENCE WITH THE CHORD OF A CURVE TO THE RIGHT HAVING A RADIUS OF 15.05', N23°35'06"W 20.98"; THENCE WITH THE CHORD OF A CURVE TO THE RIGHT HAVING A RADIUS OF 105.00', N51°23'01"W 59.41'; THENCE N65°27'03"W 71.18' TO THE APPROXIMATE CENTERLINE OF BUTLER HOBBS ROAD AND THE NORTH BOUNDARY LINE OF BAIER, N76°00'45"E 129.60'; THENCE LEAVING THE NORTH BOUNDARY LINE OF BAIER, N76°00'45"E 129.60'; THENCE LEAVING THE NORTH BOUNDARY LINE OF BAIER AND THE APPROXIMATE CENTERLINE OF BUTLER HOBBS ROAD, TRAVERSING THE LAND OF BAIER, S24*11'10"W 61.75'; THENCE WITH THE CHORD OF A NON-TANGENT CURVE TO THE LEFT HAVING A RADIUS OF 75.00', S57°03'19"E 24.06'; THENCE WITH THE CHORD OF A NON-TANGENT CURVE TO THE LEFT HAVING A RADIUS OF 75.00', S57°03'19"E 24.06'; THENCE WITH THE CHORD OF A NON-TANGENT CURVE TO THE LEFT HAVING A RADIUS OF TS.00', S57°03'19"E 24.06'; THENCE WITH THE CHORD OF A NON-TANGENT CURVE TO THE LEFT HAVING A RADIUS OF TS.00', S57°03'19"E 24.06'; THENCE WITH THE CHORD OF A CURVE TO THE LEFT HAVING A RADIUS OF TS.00', N67°09'49"E 21.78'; THENCE N00'5 THE

PARENT PARCEL - LEGAL DESCRIPTION - DEED BOOK 126, PAGE 601 (NOT FIELD SURVEYED)

A CERTAIN TRACT OR PARCEL OF LAND SITUATE, LYING AND BEING IN THE COUNTY OF BRECKINRIDGE, AND

BEGINNING AT A STONE ON THE LOUISVILLE ROAD, NEAR TO THE 105 ACRE TRACT; THENCE WITH A LINE OF THE SAME S 54 E 144 POLES TO A SMALL CHESTNUT IN THE ED HAYNES LINE; THENCE WITH HIS LINE SW 46 POLES TO A HICKORY AND DOGWOOD IN SCOTT'S LINE; THENCE WITH HIS LINE N 89 W 71 POLES TO TWO POST OAKS BY A SINK HOLE; THENCE N 39 W 45 POLES TO A STONE IN A DRAIN; WM. SCOTT'S CORNER; THENCE WITH HIS LINE N 73 W 103 POLES TO A ROCK ON THE ROAD; THENCE WITH THE ROAD AS IT MEANDERS III POLES TO THE BEGINNING, CONTAINING 78 ACRES, MORE OR LESS.

THE FOREGOING DESCRIPTION CONTAINS AND COVERS THE ROAD BED OF THE OLD RAILROAD, WHICH FORMERLY RAN THROUGH THIS TRACT OF LAND AND IT IS THE INTENTIONS OF THE PARTIES HERETO THAT THE SAID ROAD BED SHALL PASS UNDER THIS DEED. A DESCRIPTION OF THE SAID ROAD BED WILL BE FOUND IN DEED FROM THE LOUISVILLE, HENDERSON & ST. LOUIS RAILWAY COMPANY &C TO CLAUDE BUTLER AND HIS WIFE, DATED DEC. 16, 1941 AND RECORDED IN BRECKINRIDGE COUNTY COURT CLERK'S OFFICE IN DEED BOOK 82, AT PAGE 309. ALSO SEE DB 82 PAGE 555.

REPORT OF TITLE (PARCEL ID: 102-26)

THIS SURVEY DOES NOT CONSTITUTE A TITLE SEARCH BY POD GROUP, LLC. AND AS SUCH WE ARE NOT RESPONSIBLE FOR THE INVESTIGATION OR INDEPENDENT SEARCH FOR EASEMENTS OF RECORD, ENCUMBRANCES, RESTRICTIVE COVENANTS, OWNERSHIP TITLE EVIDENCE, UNRECORDED EASEMENTS, AUGMENTING EASEMENTS, IMPLIED OR PRESCRIPTIVE EASEMENTS, OR ANY OTHER FACTS THAT AN ACCURATE AND CURRENT TITLE SEARCH MAY DISCLOSE AND THIS SURVEY WAS COMPLETED WITH THE AID OF TITLE WORK PREPARED BY US TITLE SOLUTIONS, FOR THE BENEFIT OF MASTEC NETWORK SOLUTIONS, FILE NO. 55267-KY1609-5034, REFERENCE NO. FA13800743, ISSUE DATE OF SEPTEMBER 21, 2016. THE FOLLOWING COMMENTS ARE IN REGARD TO SAID REPORT.

SCHEDULE B

- 1. TAXES, TAX LIENS, TAX SALES, WATER RATES, SEWER AND ASSESSMENTS SET FORTH IN SCHEDULE HEREIN. (NOT A SURVEY MATTER, THEREFORE POD GROUP, LLC DID NOT EXAMINE OR ADDRESS THIS ITEM.)
- 2. MORTGAGES RETURNED HEREIN. (-0-), SEE SEPARATE MORTGAGE SCHEDULE. NONE WITHIN PERIOD. SEARCHED
- 3. ANY STATE OF FACTS WHICH AN ACCURATE SURVEY MIGHT SHOW OR SURVEY EXCEPTIONS SET FORTH HEREIN. (POD GROUP, LLC DID NOT PERFORM A BOUNDARY SURVEY, THEREFORE WE DID NOT ADDRESS THIS ITEM.)
- 4. RIGHTS OF TENANTS OR PERSON IN POSSESSION. (NOT A SURVEY MATTER, THEREFORE POD GROUP, LLC DID NOT EXAMINE OR ADDRESS THIS ITEM.)

(JUDGMENTS, LIENS AND UCC)

5. NONE WITHIN PERIOD SEARCHED

(COVENANTS/RESTRICTIONS)

6. NONE WITHIN PERIOD SEARCHED

(EASEMENTS AND RIGHTS OF WAY)

7. NONE WITHIN PERIOD SEARCHED

(OTHER FILED DOCUMENTS)

8. PAID-UP OIL AND GAS LEASE BETWEEN JACKIE B. BAIER & SANDRA S. BAIER (HUSBAND & WIFE) AND WHG EXPLORATION, INC. DATED 8/30/2002 RECORDED 10/22/2002 IN BOOK 30 PAGE 391. (LEASE AS RECORDED IN BOOK 30, PAGE 391 AFFECTS THE PARENT PARCEL, THE PROPOSED LEASE AREA AND THE PROPOSED ACCESS & LITHLITY FASEMENT)

9. OIL AND GAS LEASE BETWEEN JACKIE B. BAIER & SANDRA S. BAIER (HUSBAND & WIFE) AND BASIN FUELS CORPORATION DATED 5/25/2005 RECORDED 6/2/2005 IN BOOK 32 PAGE 204. (LEASE AS RECORDED IN BOOK 32, PAGE 204 AFFECTS THE PARENT PARCEL, THE PROPOSED LEASE AREA AND THE PROPOSED ACCESS & UTILITY EASEMENT.)

10. ASSIGNMENT OF OIL AND GAS LEASES BETWEEN BASIN FUELS CORPORATION, A NEVADA CORPORATION AND AURORA ENERGY, LTD DATED 6/30/2005 RECORDED 4/18/2006 IN BOOK 34 PAGE 54. (ASSIGNMENT AS RECORDED IN BOOK 34, PAGE 54 HAS NO DESCRIPTION OF THE PROPERTY OR PERSONS IT MAY AFFECT, THEREFORE POD GROUP, LLC DID NOT EXAMINE OR ADDRESS THIS ITEM.)

11. PROBATE DOCUMENTS RECORDED 7/31/2012 IN INSTRUMENT NO. 12-P-00114 NOTES: IN RE: ESTATE OF JACKIE B. BAIR. (PROBATE AS RECORDED IN #12-P-00114, TRANSFERS THE PARENT PARCEL TO SANDRA S. BAIER, SO IT AFFECTS THE PARENT PARCEL, THE PROPOSED LEASE AREA AND THE PROPOSED ACCESS & UTILITY EASEMENT.)

LAND SURVEYOR'S CERTIFICATE

I, MARK E. PATTERSON, HEREBY CERTIFY THAT I AM A LICENSED PROFESSIONAL LAND SURVEYOR LICENSED IN COMPLIANCE WITH THE LAWS OF THE COMMONWEALTH OF KENTUCKY. I FURTHER CERTIFY THAT THIS PLAT AND THE SURVEY ON THE GROUND WERE PERFORMED BY PERSONS UNDER MY DIRECT SUPERVISION, AND THAT THE DIRECTIONAL AND LINEAR MEASUREMENTS BEING WITNESSED BY MONUMENTS SHOWN HEREON ARE TRUE AND CORRECT TO THE BEST OF MY KNOWLEDGE. THE "RURAL" SURVEY, AND THE PLAT ON WHICH IT IS BASED, MEETS ALL SPECIFICATIONS AS STATED IN KAR 201 18:150.

12/20/2017

11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299 502-437-5252

:MasTec

SITE SURVEY

		7900
REV.	DATE	DESCRIPTION
Α	3.13.17	PRELIM ISSUE WITH TITL
0	3.20.17	ISSUED AS FINAL

SITE INFORMATION:

HARNED BUTLER HOBBS ROAD HARNED, KY 40144

BRECKINRIDGE COUNTY
TAX PARCEL NUMBER:
102-26

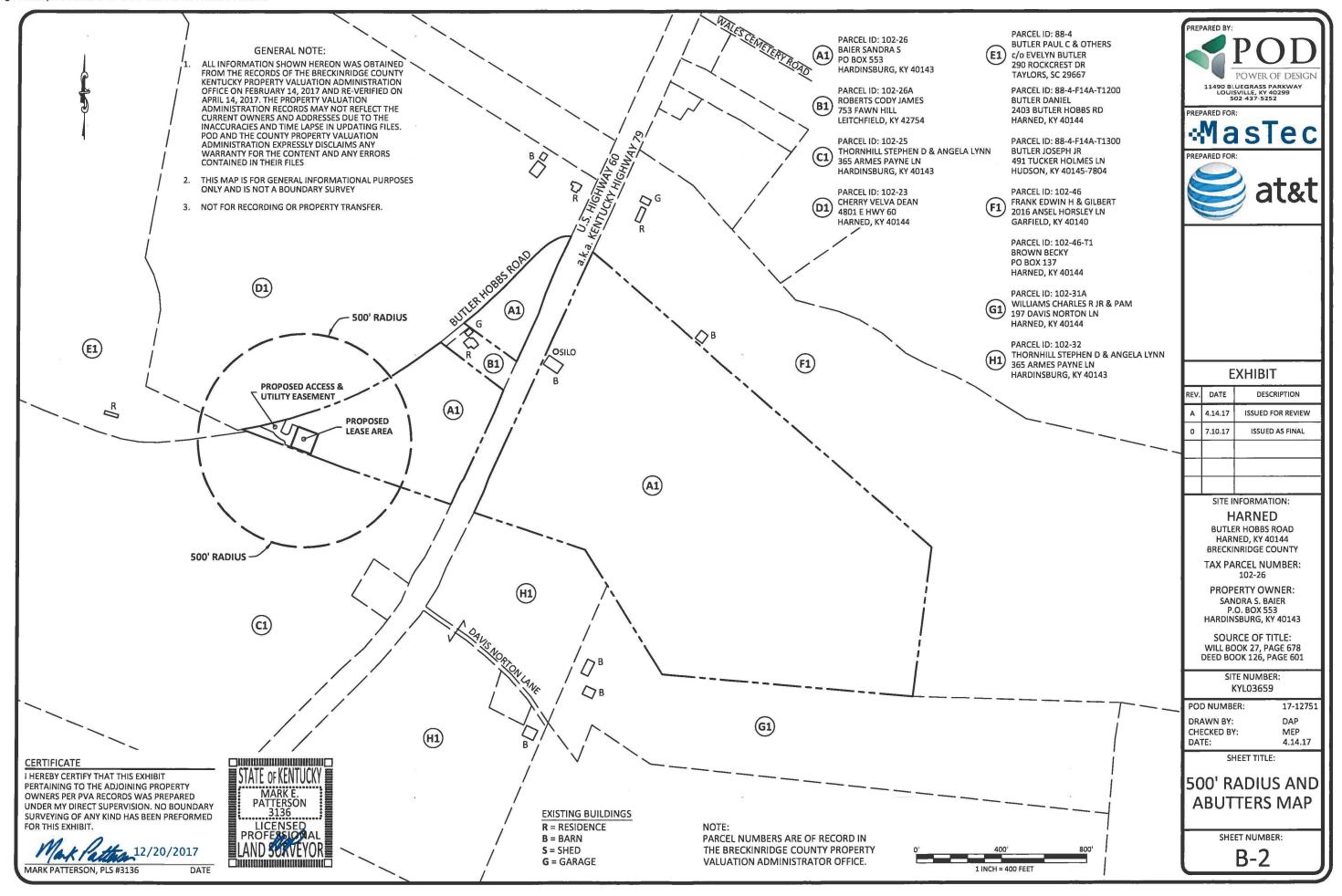
PROPERTY OWNER: SANDRA S. BAIER P.O. BOX 553 HARDINSBURG, KY 40143

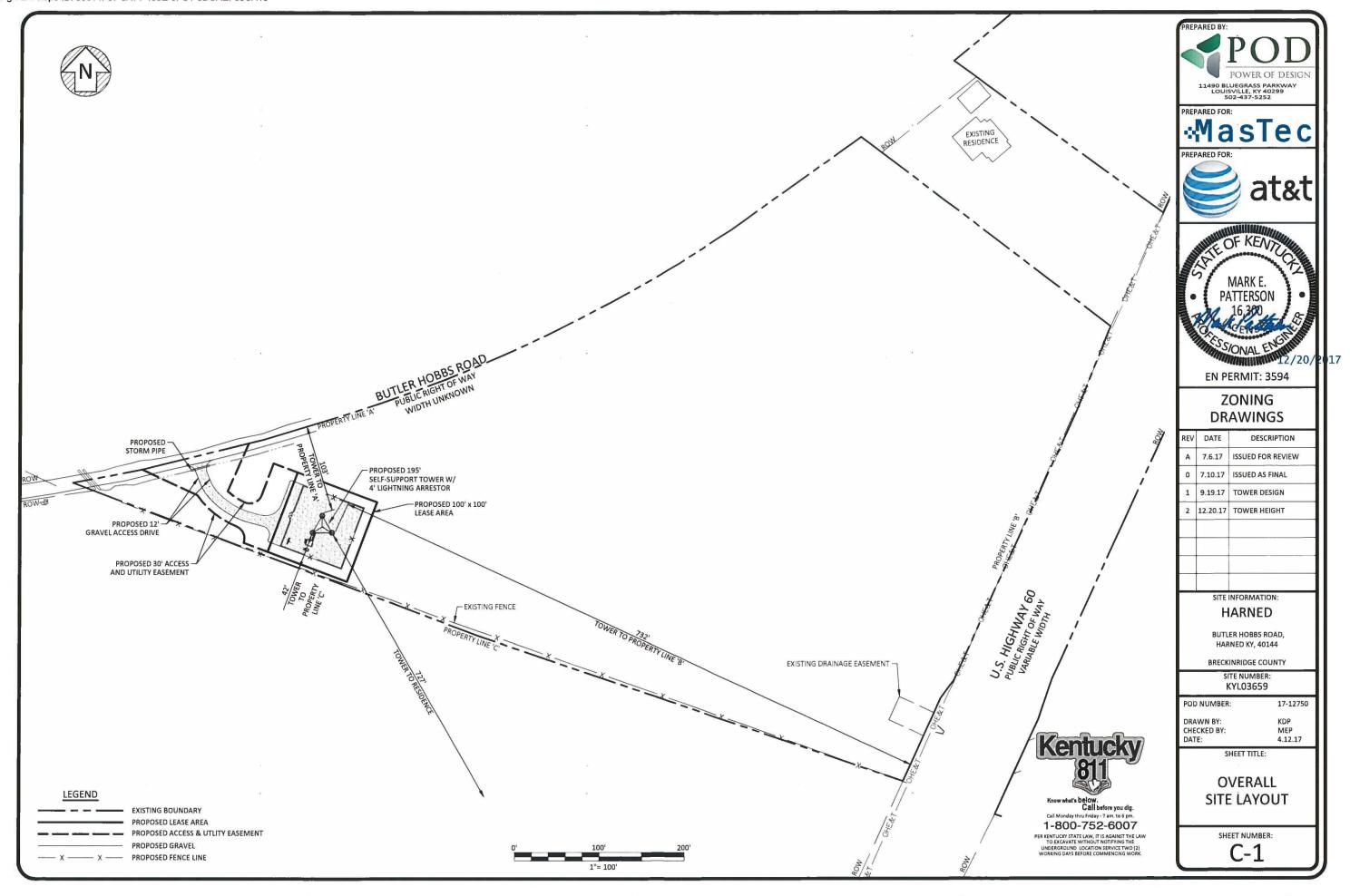
SOURCE OF TITLE: WILL BOOK 27, PAGE 678 DEED BOOK 126, PAGE 601

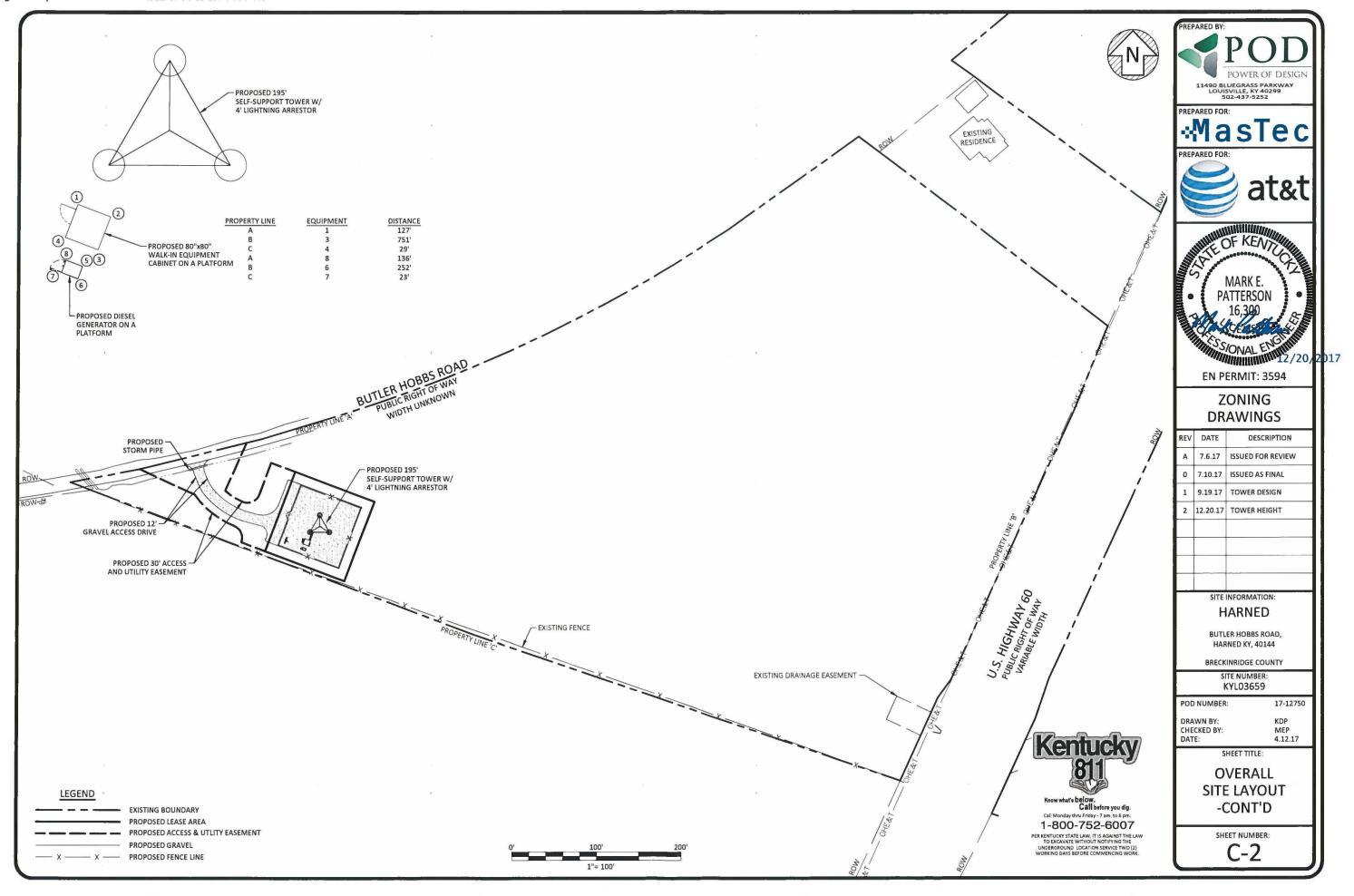
> SITE NUMBER: KYL03659

> > 17-12752

POD NUMBER: DRAWN BY:


DRAWN BY: DAP
CHECKED BY: MEP
DATE: 3.13.17


SHEET TITLE:


SITE SURVEY

SHEET NUMBER:

B-1.2

11490 BLUEGRASS PARKWAY LOUISVILLE, KY 40299 502-437-5252 PREPARED FOR: **«MasTec** PREPARED FOR: **PATTERSON** EN PERMIT: 3594 ZONING **DRAWINGS** REV DATE DESCRIPTION 7.6.17 ISSUED FOR REVIEW 0 7.10.17 ISSUED AS FINAL 1 9.19.17 TOWER DESIGN 2 12.20.17 TOWER HEIGHT SITE INFORMATION: **HARNED** BUTLER HOBBS ROAD, **HARNED KY, 40144 BRECKINRIDGE COUNTY** SITE NUMBER: KYL03659 POD NUMBER: 17-12750 KDP CHECKED BY: DATE: MEP 4.12.17 SHEET TITLE: **ENLARGED** COMPOUND

LAYOUT

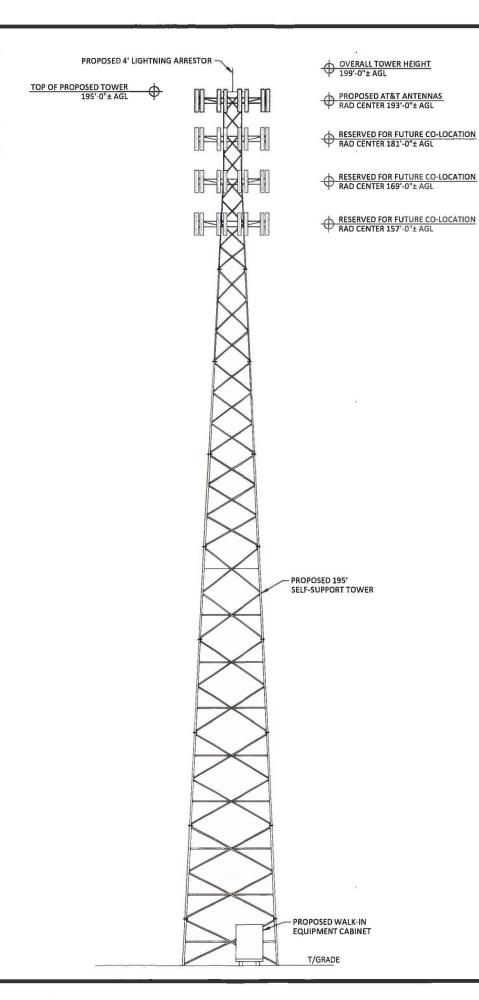
SHEET NUMBER:

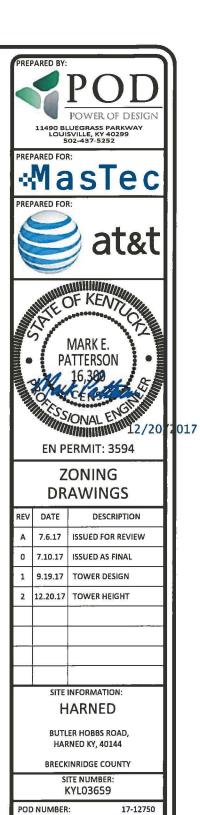
LEGEND

PROPOSED LEASE AREA PROPOSED ACCESS & UTLITY EASEMENT

PROPOSED GRAVEL

X --- PROPOSED FENCE E - PROPOSED UNDERGROUND ELECTRIC


PROPOSED UNDERGROUND FIBER


Know what's below.
Call before you dig. Call Monday thru Friday - 7 am. to 6 pm. 1-800-752-6007

PER KENTUCKY STATE LAW, IT IS AGAINST THE LAW
TO EXCAVATE WITHOUT NOTIFYING THE
UNDERGROUND LOCATION SERVICE TWO (2)
WORKING DAYS BEFORE COMMENCING WORK.

TOWER NOTES:

- 1. THE PROPOSED TOWER, FOUNDATION, ANTENNA MOUNTS, AND ANTENNAS WERE DESIGNED BY OTHERS.
- 2. THE TOWER ELEVATION SHOWN IS FOR REFERENCE ONLY.
- 3. SEE TOWER MANUFACTURER'S DRAWINGS FOR TOWER AND FOUNDATION DETAILS & SPECIFICATIONS
- 4. MANUFACTURER'S DRAWINGS SUPERCEDE A&E DRAWINGS.

DRAWN BY:

DATE:

CHECKED BY:

SHEET TITLE:

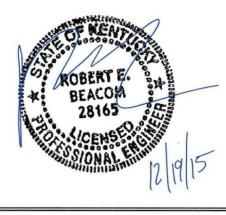
TOWER ELEVATION

SHEET NUMBER:

KDP

MEP 4.12.17

EXHIBIT C-1 TOWER AND FOUNDATION DESIGN


Structural Design Report

195' S3TL Series HD1 Self-Supporting Tower Site: Harned, KY Site Number: KYL03659

> Prepared for: AT&T by: Sabre Towers & Poles ™

> > Job Number: 170074 Revision A December 19, 2017

Tower Profile	1
Foundation Design Summary (Option 1)	2
Foundation Design Summary (Option 2)	3
Maximum Leg Loads	4
Maximum Diagonal Loads	5
Maximum Foundation Loads	6
Calculations	7-20

NONE D	-					565	195'	
L2X		NONE				Ċ	180'	
L2X2X3/16		O		5.	11 @ 5'	1375		
	æ		(1) 5/8"	7.		1900	160'	
	L 2 1/2 X 2 1/2 X 1/4			ò		2421	140'	
				11.	9 @ 6.6667"	3017	120'	
	L3X3X3/16	NONE		13.		3211	100'	
				15'		4394	60'	
	L 3 1/2 X 3 1/2 X 1/4		(1) 3/4"	17.	30 10.	4518	40'	
				19,	8	4654		
	L4X4X1/4			21'		5073	20'	
+				_	eight		0,	23' - 0"

Designed Appurtenance Loading

Elev	Description	Tx-Line
193	(1) 278 Sq. FT. EPA 6000# (No Ice)	(18) 1 5/8"
181	(1) 208 sq. ft. EPA 4000# (no ice)	(18) 1 5/8"
169	(1) 208 sq. ft. EPA 4000# (no ice)	(18) 1 5/8"
157	(1) 208 sq. ft. EPA 4000# (no ice)	(18) 1 5/8"

Base Reactions

Total Fo	undation	Individual Footing		
Shear (kips)	72.9	Shear (kips)	44.72	
Axial (kips)	184.06	Compression (kips)	493	
Moment (ft-kips)	9326	Uplift (kips)	438	
Torsion (ft-kips)	-22.18			

Material List

Display	Value				
A	2.375 OD X .154				
В	L 2 1/2 X 2 1/2 X 3/16				
С	L 2 X 2 X 3/16				
D	L 2 X 2 X 1/8				

Notes

- 1) All legs are A500 (50 ksi Min. Yield).
- 2) All braces are A572 Grade 50.
- 3) All brace bolts are A325-X.
- 4) The tower model is S3TL Series HD1.
- Transmission lines are to be attached to standard 12 hole waveguide ladders with stackable hangers.
- 6) Azimuths are relative (not based on true north).
- 7) Foundation loads shown are maximums.
- 8) (6) 1 1/2" dia. F1554 grade 105 anchor bolts per leg. Minimum 58" embedment from top of concrete to top of nut.
- 9) All unequal angles are oriented with the short leg vertical.
- 10) Weights shown are estimates. Final weights may vary.
- 11) This tower was designed for a basic wind speed of 89 mph with 0" of radial ice, and 30 mph with 3/4" of radial ice, in accordance with ANSI/TIA-222-G, Structure Class II, Exposure Category C, Topographic Category 1.
- 12) The foundation loads shown are factored loads.
- 13) The tower design meets the requirements for an Ultimate Wind Speed of 115 mph (Risk Category II), in accordance with the 2012 International Building Code.
- 14) Tower Rating: 99.38%

Sabre Communications Corporation 7101 Southbridge Drive P.O. Box 658 Sioux City, IA 51102-0658 Prene (712) 278-6690 Fax (712) 278-6691

Information contained herein is the sole property of Sabre Communications Corporation, constitutes a tradesecret as defined by Iowa Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Communications Corporation. Job: 170074A

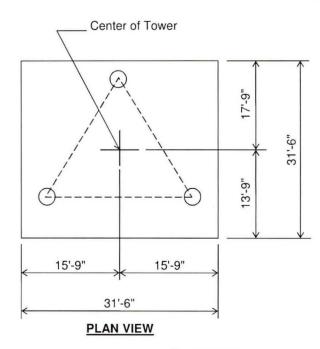
Customer: AT&T

Site Name: Harned, KY KYL03659

Description: 195' S3TL

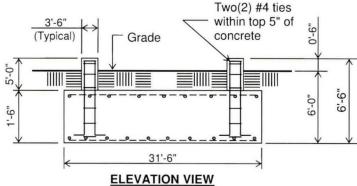
Date: 12/19/2017

By: REB



No.: 170074

Date: 12/19/17 By: DJH Revision A


Customer: MASTEC NETWORK SOLUTIONS GROUP Site: Harned, KY KYL03659

195 ft. Model S3TL Series HD1 Self Supporting Tower At
89 mph Wind with no ice and 30 mph Wind with 0.75 in. Ice per ANSI/TIA-222-G.
Antenna Loading per Page 1

Notes:

- 1). Concrete shall have a minimum 28-day compressive strength of 4500 PSI, in accordance with ACI 318-11.
- 2). Rebar to conform to ASTM specification A615 Grade 60.
- 3). All rebar to have a minimum of 3" concrete cover.
- 4). All exposed concrete corners to be chamfered 3/4".
- 5). The foundation design is based on the geotechnical report by Power of Design Group, LLC; project# 17-12748; dated August 31, 2017.

compaction requirements, if specified.
7). The foundation is based on the

6). See the geotechnical report for

following factored loads: Factored download (kips) = 72.88 Factored overturn (kip-ft) = 9326.12 Factored shear (kips) = 72.9

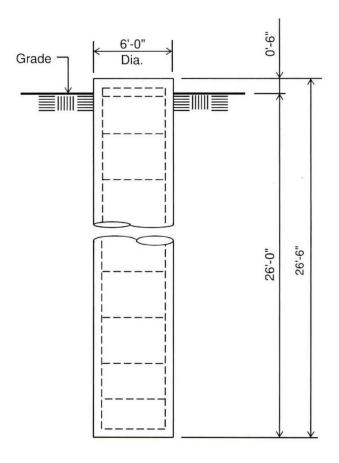
8). 4.5 ft of soil cover is required over the entire area of the foundation slab.

CAUTION: Center of tower is not in center of slab.

(60.47 Cu. Yds.) (1 REQD.; NOT TO SCALE)

F	Rebar Schedule per Mat and per Pier
Pier	(16) #8 vertical rebar w/ hooks at bottom w/ #4 Rebar ties, two (2) within top 5" of pier then 11" C/C
Mat	(58) #10 horizontal rebar evenly spaced each way top and bottom. (232 total)

Information contained herein is the sole property of Sabre Towers & Poles, constitutes a trade secret as defined by Iowa Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Towers & Poles.



No.: 170074

Date: 12/19/17 By: DJH Revision A

Customer: MASTEC NETWORK SOLUTIONS GROUP Site: Harned, KY KYL03659

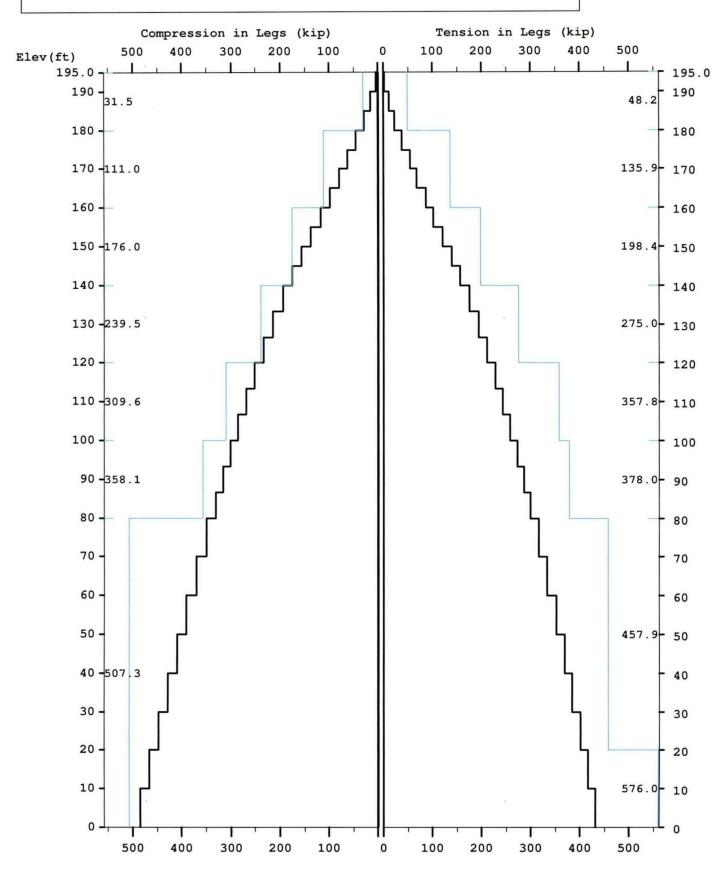
195 ft. Model S3TL Series HD1 Self Supporting Tower At
89 mph Wind with no ice and 30 mph Wind with 0.75 in. Ice per ANSI/TIA-222-G.
Antenna Loading per Page 1

ELEVATION VIEW

(27.75 Cu. Yds. each) (3 REQUIRED; NOT TO SCALE)

Notes:

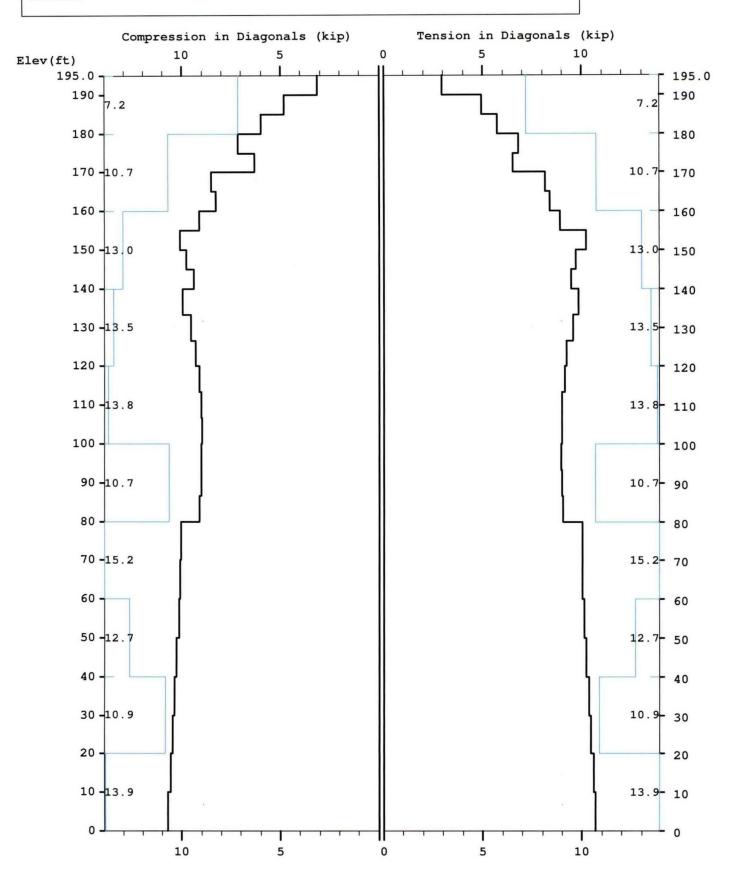
- 1). Concrete shall have a minimum 28-day compressive strength of 4500 PSI, in accordance with ACI 318-11.
- 2). Rebars to conform to ASTM specification A615 Grade 60.
- 3). All rebar to have a minimum of 3" concrete cover.
- 4). All exposed concrete corners to be chamfered 3/4".
- 5). The foundation design is based on the geotechnical report by Power of Design Group, LLC; project# 17-12748; dated August 31, 2017.
- 6). See the geotechnical report for drilled pier installation requirements, if specified.
- 7). The foundation is based on the following factored loads:
 Factored uplift (kips) = 438
 Factored download (kips) = 493
 Factored shear (kips) = 45


	Rebar Schedule per Pier
Pier	(26) #8 vertical rebar w/#4 ties, two (2) within top 5" of pier then 12" C/C

Information contained herein is the sole property of Sabre Towers & Poles, constitutes a trade secret as defined by Iowa Code Ch. 550 and shall not be reproduced, copied or used in whole or part for any purpose whatsoever without the prior written consent of Sabre Towers & Poles.

DRAWFORCE Ver 2.2 (c) Guymast Inc. 2006-2009 Phone: (416) 736-7453

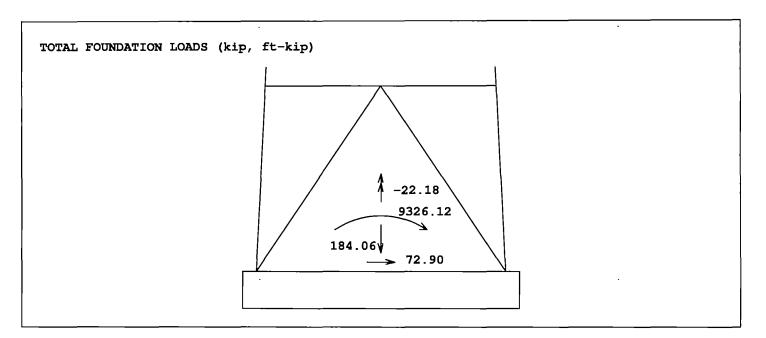
Licensed to: Sabre Towers and Poles

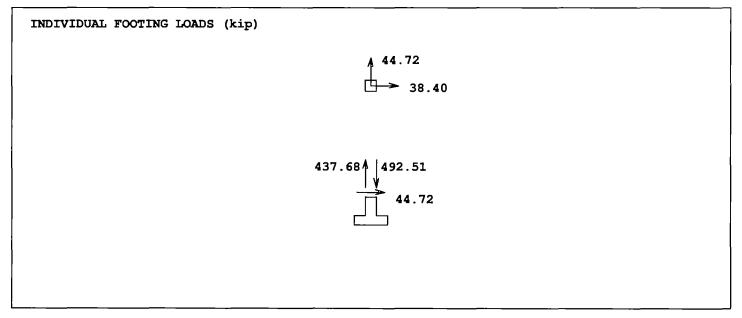

Maximum

DRAWFORCE Ver 2.2 (c) Guymast Inc. 2006-2009 Phone: (416) 736-7453

Licensed to: Sabre Towers and Poles

Maximum




'DRAWFORCE Ver 2.2 (c) Guymast Inc. 2006-2009 Phone: (416) 736-7453

Licensed to: Sabre Towers and Poles

11:30:05

Maximum

170074A

Latticed Tower Analysis (Unguyed) Processed under license at:

(c)2013 Guymast Inc. 416-736-7453

Sabre Towers and Poles

on: 15 dec 2017 at: 11:30:05

MAST GEOMETRY (ft)

PANEL TYPE	NO.OF LEGS	ELEV.AT BOTTOM	ELEV.AT TOP	F.WAT BOTTOM	F.WAT TOP	TYPICAL PANEL HEIGHT
x x x x x x x	***************************************	190.00 180.00 175.00 160.00 140.00 120.00 100.00 80.00 40.00	195.00 190.00 180.00 175.00 160.00 140.00 100.00 80.00	5.00 5.00 5.50 7.00 9.00 11.00 13.00 17.00 19.00	5.00 5.00 5.00 5.50 7.00 9.00 11.00 13.00 17.00	5.00 5.00 5.00 5.00 5.00 6.67 6.67 6.67 10.00
X X	3	20.00 0.00	40.00 20.00	21.00 23.00	19.00 21.00	10.00 10.00

MEMBER PROPERTIES

MEMBER TYPE	BOTTOM ELEV ft	TOP ELEV ft	X-SECTN AREA in.sq	RADIUS OF GYRAT in	ELASTIC MODULUS ksi	THERMAL EXPANSN /deg
LE LE	180.00 160.00	195.00 180.00	1.075 3.016	0.787 0.787	29000. 29000.	0.0000117 0.0000117
LE	140.00	160.00	4.407	0.787	29000.	0.0000117
LE	120.00	140.00	6.111	0.787	29000.	0.0000117
LE	100.00	120.00	7.952	0.787	29000.	0.0000117
LE	80.00	100.00	8.399	0.787	29000.	0.0000117
LE	0.00	80.00	12.763	0.787	29000.	0.0000117
DI	180.00	195.00	0.484	0.626	29000.	0.0000117
DI	160.00	180.00	0.715	0.626	29000.	0.0000117
DI	140.00	160.00	0.902	0.626	29000.	0.0000117
DI	120.00	140.00	1.188	0.626	29000.	0.0000117
DI	80.00	120.00	1.090	0.626	29000.	0.0000117
DI	20.00	80.00	1.688	0.626	29000.	0.0000117
DI	0.00	20.00	1.938	0.626	29000.	0.0000117
но	190.00	195.00	0.484	0.626	29000.	0.0000117
НО	175.00	180.00	0.715	0.626	29000.	0.0000117

FACTORED MEMBER RESISTANCES

BOTTOM ELEV	TOP ELEV	COMP	EGS TENS	COMP	ONALS TENS	COMP	ONTALS TENS	COMP	BRACING TENS
ft	ft	kip	kip	kip	kip	kip	kip	kip	kip
190.0 180.0 175.0 160.0 140.0 120.0 100.0 80.0 60.0 40.0 20.0	195.0 190.0 180.0 175.0 160.0 140.0 120.0 100.0 80.0 60.0 40.0	31.48 110.98 110.98 175.98 239.46 309.64 358.08 507.33 507.33	48.15 48.15 135.90 135.90 198.45 274.95 357.75 378.00 457.90 457.90 457.90	7.16 7.16 10.74 10.74 13.03 13.49 13.79 10.69 15.18 12.68 10.85	7.16 7.16 10.74 10.74 13.03 13.49 13.79 10.69 15.18 12.68 10.85	5.73 0.00 8.38 0.00 0.00 0.00 0.00 0.00 0.0	5.73 0.00 8.38 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

^{*} Only 3 condition(s) shown in full .
* Some wind loads may have been derived from full-scale wind tunnel testing

LOADING CONDITION A ----

89 mph wind with no ice. Wind Azimuth: O♦

MAST LOADING

LOAD TYPE	ELEV ft	APPLYLO RADIUS ft	ADAT AZI	LOAD AZI	FORCES HORIZ kip	DOWN kip	MOME VERTICAL ft-kip	NTS TORSNAL ft-kip
c c c	193.0 181.0 169.0 157.0	0.00 0.00 0.00 0.00	0.0 0.0 0.0 0.0	0.0 0.0 0.0 0.0	9.47 6.99 6.89 6.79	7.20 4.80 4.80 4.80	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
000000000000000000000000000000000000000	195.0 190.0 180.0 180.0 170.0 170.0 160.0 155.0 140.0 120.0 120.0 100.0 80.0 80.0 80.0 40.0 20.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	42.0 42.0 49.3 77.8 80.7 92.4 73.6 329.5 329.9 329.9 330.0 329.8 330.0 329.8 330.0 329.8	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.10 0.10 0.12 0.13 0.17 0.16 0.18 0.19 0.21 0.21 0.22 0.21 0.22 0.23 0.23 0.23 0.24 0.22 0.23 0.24 0.22 0.21 0.19	0.05 0.06 0.07 0.13 0.12 0.19 0.20 0.21 0.23 0.24 0.26 0.27 0.35 0.35 0.36	0.03 0.06 0.06 0.06 0.05 0.04 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02	0.06 0.09 0.10 0.11 0.11 0.07 0.06 0.05 0.04 0.04 0.04 0.04 0.04 0.04 0.04

SUPPRESS PRINTING

LOADS INPUT		MEMBER FORCES		ALL		IMUMS MEMBER FORCES	
no	yes	yes	yes	no	no	no	no

LOADING CONDITION M ----

89 mph wind with no ice. Wind Azimuth: 0+

MAST LOADING

LOAD TYPE	ELEV ft	APPLYLOA RADIUS ft	ADAT AZI	LOAD AZI	FORCE HORIZ kip	S DOWN kip	MOME VERTICAL ft-kip	ENTS TORSNAL ft-kip
с с с	193.0 181.0 169.0 157.0	0.00 0.00 0.00 0.00	0.0 0.0 0.0	0.0 0.0 0.0 0.0	9.47 6.99 6.89 6.79	5.40 3.60 3.60 3.60	0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00
D D D	195.0 190.0 190.0 180.0	0.00 0.00 0.00 0.00	42.0 42.0 42.0 49.3	0.0 0.0 0.0 0.0	0.10 0.10 0.12 0.13	0.04 0.04 0.04 0.05	0.03 0.03 0.04 0.04	0.06 0.06 0.09 0.10

						170074A		
D	180.0	0.00	77.8	0.0	0.17	0.10	0.04	0.11
Ď	170.0	0.00	80.2	0.0	0.16	0.09	0.04	0.11
D	170.0	0.00	88.7	0.0	0.18	0.11	0.04	0.07
D	160.0	0.00	92.4	0.0	0.19	0.11	0.03	0.06
Ď	160.0	0.00	73.6	0.0	0.21	0.14	0.02	0.05
Ď	155.0	0.00	73.6	0.0	0.21	0.14	0.02	0.05
D	155.0	0.00	329.9	0.0	0.21	0.15	0.01	0.04
D	140.0	0.00	329.5	0.0	0.22	0.15	0.01	0.04
D	140.0	0.00	329.9	0.0	0.21	0.17	0.01	0.04
D	120.0	0.00	329.4	0.0	0.22	0.18	0.01	0.04
D	120.0	0.00	330.0	0.0	0.22	0.19	0.01	0.04
D	100.0	0.00	329.5	0.0	0.23	0.20	0.01	0.04
D	100.0	0.00	330.0	0.0	0.23	0.20	0.01	0.04
D	80.0	0.00	329.6	0.0	0.24	0.21	0.01	0.04
D	80.0	0.00	329.9	0.0	0.22	0.25	0.01	0.04
D	40.0	0.00	329.8	0.0	0.22	0.26	0.01	0.03
D	40.0	0.00	330.0	0.0	0.21	0.26	0.01	0.03
D	20.0	0.00	329.8	0.0	0.21	0.27	0.01	0.03
D	20.0	0.00	330.0	0.0	0.19	0.28	0.01	0.03
D	0.0	0.00	329.9	0.0	0.19	0.28	0.01	0.03

SUPPRESS PRINTING

	FOF	R THIS LO	ADING	MAXIMUMS				
LOADS	DISPL	MEMBER	FOUNDN	ALL	DISPL	MEMBER	FOUNDN	
INPUT		FORCES	LOADS			FORCES	LOADS	
no	yes	yes	yes	по	no	no	no	

LOADING CONDITION Y

30 mph wind with 0.75 ice. Wind Azimuth: $0 \leftarrow$

MAST LOADING

CADD TYPE RADIUS AZI AZI AZI HORIZ DOWN VERTICAL TORSNAL Kip Kip Kip Ft-kip Te-kip Te-kip Kip Ki									
ft ft kip kip ft-kip ft-kip ft-kip C 193.0 0.00 0.0 0.0 1.16 17.94 0.00 0.00 C 181.0 0.00 0.0 0.0 1.38 11.91 0.00 0.00 C 169.0 0.00 0.0 0.0 1.35 11.86 0.00 0.00 D 195.0 0.00 0.0 0.0 1.33 11.81 0.00 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 50.4 0.0 0.01 0.26		ELEV		ADAT	LOAD	FORCE	ES	MOME	NTS
C 193.0 0.00 0.0 1.16 17.94 0.00 0.00 C 181.0 0.00 0.00 0.00 1.38 11.91 0.00 0.00 0.00 C 169.0 0.00 0.0 0.0 1.38 11.81 0.00 0.00 0.00 C 157.0 0.00 0.0 0.0 1.35 11.86 0.00 0.00 0.00 D 157.0 0.00 0.0 0.0 0.0 1.33 11.81 0.00 0.00 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 87.0 0.0 0.01 0.26 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 89.4 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 89.4 0.0 0.02 0.42 0.21 0.01 D 170.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 87.6 0.0 0.02 0.39 0.20 0.01 D 165.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.66 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.66 0.08 0.00 D 155.0 0.00 329.9 0.0 0.02 0.66 0.08 0.00 D 120.0 0.00 329.5 0.0 0.02 0.66 0.08 0.00 D 120.0 0.00 329.5 0.0 0.02 0.66 0.06 0.00 D 140.0 0.00 329.5 0.0 0.00 0.02 0.66 0.00 0.00 D 140.0 0.00 329.5 0.0 0.00 0.02 0.77 0.06 0.00 D 100.0 0.00 329.5 0.0 0.00 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.00 0.02 0.77 0.06 0.00 D 100.0 0.00 329.9 0.0 0.00 0.02 0.77 0.06 0.00 D 100.0 0.00 329.9 0.0 0.00 0.02 0.77 0.06 0.00 D 100.0 0.00 329.9 0.0 0.00 0.02 0.77 0.06 0.00 D 100.0 0.00 329.9 0.0 0.00 0.02 0.77 0.06 0.00 D 100.0 0.00 329.9 0.0 0.00 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.00 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.00 0.02	TYPE	_		AZI	AZI				
C 181.0 0.00 0.0 0.0 1.38 11.91 0.00 0.00 C 169.0 0.00 0.0 0.00 1.35 11.86 0.00 0.00 0.00 C 157.0 0.00 0.0 0.0 1.35 11.86 0.00 0.00 0.00 C 157.0 0.00 0.0 0.0 1.33 11.81 0.00 0.00 0.00 D 195.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 87.0 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 89.4 0.0 0.02 0.42 0.21 0.01 D 170.0 0.00 89.4 0.0 0.02 0.42 0.21 0.01 D 170.0 0.00 89.4 0.0 0.02 0.42 0.21 0.01 D 170.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.63 0.06 0.00 D 155.0 0.00 329.9 0.0 0.02 0.65 0.08 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.72 0.66 0.00 D 120.0 0.00 329.9 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.00 0.02 0.78 0.06 0.00 D 120.0 0.00 329.9 0.0 0.00 0.02 0.79 0.06 0.00 D 120.0 0.00 329.9 0.0 0.00 0.02 0.79 0.06 0.00 D 120.0 0.00 329.8 0.0		ft	ft			kip	kip	ft-kip	ft-kip
C 181.0 0.00 0.0 0.0 1.38 11.91 0.00 0.00 C 169.0 0.00 0.0 0.00 1.35 11.86 0.00 0.00 0.00 C 157.0 0.00 0.0 0.0 1.35 11.86 0.00 0.00 0.00 C 157.0 0.00 0.0 0.0 1.33 11.81 0.00 0.00 0.00 D 195.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 87.0 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 89.4 0.0 0.02 0.42 0.21 0.01 D 170.0 0.00 89.4 0.0 0.02 0.42 0.21 0.01 D 170.0 0.00 89.4 0.0 0.02 0.42 0.21 0.01 D 170.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.63 0.06 0.00 D 155.0 0.00 329.9 0.0 0.02 0.65 0.08 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.72 0.66 0.00 D 120.0 0.00 329.9 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.00 0.02 0.78 0.06 0.00 D 120.0 0.00 329.9 0.0 0.00 0.02 0.79 0.06 0.00 D 120.0 0.00 329.9 0.0 0.00 0.02 0.79 0.06 0.00 D 120.0 0.00 329.8 0.0	c	193.0	0.00	0.0	0.0	1.16	17.94	0.00	0.00
C 157.0 0.00 0.0 1.33 11.81 0.00 0.00 D 195.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 50.4 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 87.0 0.0 0.01 0.26 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 87.6 0.0 0.02						1.38			
D 195.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 87.0 0.0 0.01 0.26 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 87.6 0.0 0.02 0.39 0.20 0.01 D 165.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 65.6 0.0 0.02 0.49 0.12 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 329.9 0.0 0.02 0.60 0.08 0.00 D 155.0 0.00 329.9 0.0 0.02 0.60 0.08 0.00 D 140.0 0.00 329.9 0.0 0.02 0.63 0.06 0.00 D 140.0 0.00 329.5 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.77 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.77 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.8 0.0 0.00 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.00 0.02 0.79 0.06 0.00 D 50.0 0.00 329.8 0.0 0.00 0.02 0.79 0.06 0.00 D						1.35		0.00	0.00
D 190.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 87.0 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 87.6 0.0 0.02 0.39 0.20 0.01 D 165.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 155.0 0.00 65.6 0.0 0.02 0.49 0.12 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.60 0.06 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.5 0.0 0.02 0.62 0.07 0.00 D 120.0 0.00 329.5 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.79 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.79 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.79 0.06 0.00 D 50.0 0.00 329	C	157.0	0.00	0.0	0.0	1.33	11.81	0.00	0.00
D 190.0 0.00 42.0 0.0 0.01 0.24 0.13 0.00 D 190.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 42.0 0.0 0.01 0.24 0.21 0.01 D 185.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 50.4 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 87.0 0.0 0.01 0.26 0.21 0.01 D 180.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 87.6 0.0 0.02 0.39 0.20 0.01 D 165.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 155.0 0.00 65.6 0.0 0.02 0.49 0.12 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.60 0.06 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.5 0.0 0.02 0.62 0.07 0.00 D 120.0 0.00 329.5 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.72 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 120.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.79 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.79 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.79 0.06 0.00 D 50.0 0.00 329	D	195.0	0.00	42.0	0.0	0.01	0 24	0 13	0.00
D									
D		190.0	0.00						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	D				0.0	0.01	0.24		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
D 175.0 0.00 87.0 0.0 0.02 0.42 0.21 0.01 D 175.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 87.6 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 65.6 0.0 0.02 0.49 0.12 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 140.0 0.00 329.9 0.0 0.02 0.60 0.06 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.08 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.70 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.77 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
D 175.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 329.9 0.0 0.02 0.60 0.06 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 100.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 100.0 0.00 330.0 0.0 0.02 0.65 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.79 0.06 0.00									
D 170.0 0.00 89.4 0.0 0.02 0.39 0.20 0.01 D 170.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 65.6 0.0 0.02 0.49 0.12 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 140.0 0.00 329.9 0.0 0.02 0.60 0.06 0.06 0.00 D 140.0 0.00 329.5 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 120.0 0.00 329.4 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.70 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.5 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$									
D 165.0 0.00 87.6 0.0 0.02 0.46 0.14 0.00 D 165.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 329.9 0.0 0.02 0.56 0.08 0.00 D 140.0 0.00 329.9 0.0 0.02 0.60 0.06 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 330.0 0.0 0.02 0.65 0.06 0.00 D 100.0 0.00 330.0 0.0 0.02 0.65 0.06 0.00 D 100.0 0.00 330.0 0.0 0.02 0.70 0.06 0.00 D 100.0 0.00 330.0 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
D 165.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 87.7 0.0 0.02 0.49 0.12 0.00 D 160.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 329.9 0.0 0.02 0.60 0.06 0.00 D 140.0 0.00 329.9 0.0 0.02 0.60 0.06 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 120.0 0.00 329.4 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 330.0 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.70 0.06 0.00 D 100.0 0.00 329.6 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.74 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				87.7					
D 160.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 329.9 0.0 0.02 0.66 0.08 0.00 D 140.0 0.00 329.9 0.0 0.02 0.66 0.06 0.06 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.70 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00				87.7					
D 155.0 0.00 65.6 0.0 0.02 0.56 0.08 0.00 D 155.0 0.00 329.9 0.0 0.02 0.60 0.06 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 330.0 0.0 0.02 0.65 0.06 0.00 D 100.0 0.00 330.0 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 330.0 0.0 0.02 0.70 0.06 0.00 D 100.0 0.00 330.0 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
D 155.0 0.00 329.9 0.0 0.02 0.60 0.06 0.00 D 140.0 0.00 329.9 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 330.0 0.0 0.02 0.65 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.70 0.06 0.00 D 100.0 0.00 329.6 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
D 140.0 0.00 329.5 0.0 0.02 0.62 0.07 0.00 D 140.0 0.00 329.9 0.0 0.02 0.63 0.06 0.00 D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 330.0 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.70 0.06 0.00 D 100.0 0.00 330.0 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
D 120.0 0.00 329.4 0.0 0.02 0.65 0.06 0.00 D 120.0 0.00 330.0 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 330.0 0.0 0.02 0.70 0.06 0.00 D 100.0 0.00 330.0 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.74 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00	D		0.00	329.5		0.02	0.62		
D 120.0 0.00 330.0 0.0 0.02 0.68 0.06 0.00 D 100.0 0.00 329.5 0.0 0.02 0.70 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00					0.0		0.63	0.06	0.00
D 100.0 0.00 329.5 0.0 0.02 0.70 0.06 0.00 D 100.0 0.00 330.0 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
D 100.0 0.00 330.0 0.0 0.02 0.72 0.06 0.00 D 80.0 0.00 329.6 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
D 80.0 0.00 329.6 0.0 0.02 0.74 0.06 0.00 D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
D 80.0 0.00 329.9 0.0 0.02 0.77 0.06 0.00 D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
D 50.0 0.00 329.9 0.0 0.02 0.78 0.06 0.00 D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
D 50.0 0.00 329.8 0.0 0.02 0.79 0.06 0.00									
-0 200 000 1299 1111 1102 079 076 076	D	20.0	0.00	329.9	0.0	0.02	0.79	0.06	0.00

						170074A		
D	20.0	0.00	330.0	0.0	0.02	0.85	0.07	0.00
D	10.0	0.00	330.0	0.0	0.02	0.85	0.07	0.00
D	10.0	0.00	329.9	0.0	0.02	0.94	0.09	0.00
D	0.0	0.00	329.9	0.0	0.02	0.94	0.09	0.00

SUPPRESS PRINTING

	FOR	THIS LO	ADING	MAXIMUMS				
LOADS INPUT	DISPL	MEMBER FORCES	FOUNDN LOADS	ALL	DISPL	MEMBER FORCES		
no	Ves	VAS	VAS	no	no	no	no.	

MAXIMUM MAST DISPLACEMENTS:

ELEV	DEF	LECTIONS (f	t)	TILTS ((DEG)	TWIST
ft	NORTH	EAST	DOWN		EAST	DEG
195.0 190.0 185.0 180.0 175.0 175.0 165.0 165.0 145.0 145.0 145.0 145.0 140.0 133.3 126.7 120.0 113.3 106.7 100.0 93.3 86.7 80.0 70.0 60.0 50.0	2.434 G 2.292 G 2.149 G 2.012 G 1.881 G 1.756 G 1.632 G 1.517 G 1.406 G 1.301 G 1.201 G 0.992 G 0.695 G 0.695 G 0.610 G 0.397 G 0.338 G 0.397 G 0.338 G 0.197 G 0.141 G 0.095 G 0.058 G	2.343 J 2.205 J 2.068 J 1.936 J 1.810 J 1.571 J 1.460 J 1.354 J 1.252 J 1.156 J 1.066 J 0.954 J 0.756 J 0.587 J 0.587 J 0.587 J 0.587 J 0.587 J 0.325	0.031 G 0.029 e 0.028 e 0.027 e 0.026 e 0.025 e 0.022 e 0.022 e 0.021 e 0.020 e 0.016 e 0.016 e 0.016 e 0.016 e 0.017 e 0.010 e 0.010 e 0.010 e 0.010 e 0.010 e 0.010 c 0.010 c 0.008 c 0.007 e 0.008 c 0.005 c 0.003 c	1.617 G 1.609 G 1.567 G 1.486 G 1.444 G 1.328 G 1.1255 G 1.199 G 1.138 G 1.072 G 0.932 G 0.858 G 0.782 G 0.724 G 0.665 G 0.665 G 0.550 G 0.494 G 0.437 G 0.326 G 0.271 G 0.216 G 0.216 G 0.108 G	1.557 J 1.549 J 1.508 J 1.389 J 1.389 J 1.277 J 1.207 J 1.154 J 1.096 J 0.965 J 0.826 J 0.753 J 0.640 J 0.583	0.092 L 0.091 L 0.089 X 0.079 X 0.074 X 0.065 X 0.065 X 0.055 X 0.055 X 0.055 X 0.048 X 0.048 X 0.032 X 0.036 X 0.032 X 0.020 X 0.020 X 0.021 X 0.011 X 0.011 X 0.001 X
10.0	0.009 G	0.008 J	0.002 c	0.053 G	0.051 J	-0.003 В
0.0	0.000 A	0.000 A	0.000 A	0.000 A	0.000 A	0.000 А

MAXIMUM TENSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG	HORIZ	BRACE
195.0	1 67 H		0.46 K	0.00 A
190.0	1.67 M	2.93 M	0.07 G	0.00 A
185.0	10.86 M	4.96 B	0.23 A	0.00 A
180.0	23.35 M	5.73 N	0.75 K	0.00 A
175.0	37.88 M	6.82 N	0.29 A	0.00 A
170.0	53.69 M	6.51 B	0.05 c	0.00 A
165.0	68.11 M	8.18 M	0.27 A	0.00 A
160.0	86.54 M	8.41 B	0.06 A	0.00 A
155.0	102.53 M	8.90 N	0.14 A	0.00 A
150.0	120.94 M	10.19 B	0.13 A	0.00 A

			170	074A
145.0	139.16 M	9.71 N 	0.13 A	0.00 A
140.0	156.26 M	9.46 В 	0.13 A	0.00 A
133.3	174.26 M	9.86 T	0.12 A	0.00 A
126.7	193.68 M	9.56 B	0.13 A	0.00 A
120.0	211.39 M	9.26 T	0.11 A	0.00 A
113.3	228.19 M	9.13 в	0.08 A	0.00 A
106.7	243.80 M	8.99 V	0.10 A	0.00 A
100.0	258.82 M	8.98 J	0.07 A	0.00 A
93.3	273.02 M	8.96 V	0.11 A	0.00 A
86.7	286.79 M	9.02 P	0.11 A 0.07 A	0.00 A
80.0	300.01 M	9.07 P	0.10 A	0.00 A
70.0	315.81 M	10.02 P	0.10 A 0.09 A	0.00 A
	334.06 M	10.05 P	0.09 A	0.00 A
60.0	351.61 M	10.13 P	0.09 A 0.08 A	0.00 A
50.0	368.52 M	10.23 V		
40.0	384.90 M	10.35 V	0.08 A	0.00 A
30.0	400.75 M	10.45 P	0.07 A	0.00 A
20.0	416.15 M	10.58 V	0.01 A	0.00 A
10.0	430.98 M	10.67 V	0.07 A	0.00 A
0.0			0.00 A	0.00 A

MAXIMUM COMPRESSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG	HORIZ	BRACE
195.0			-0.34 Q	0.00 A
190.0	-4.04 G	-3.12 G	-0.04 M	0.00 A
185.0	-15.58 G	-4.82 N	-0.16 s	0.00 A
	-28.43 G	-5.97 в		
180.0	-45.53 G	-7.13 н	-0.61 Q	0.00 A
175.0	-62.55 G	-6.33 N	-0.23 s	0.00 A
170.0			-0.05 U	0.00 A
165.0	-79.22 G	-8.53 G	-0.21 s	0.00 A
160.0	-99.33 G	-8.28 N	-0.05 s	0.00 A
	-116.75 G	-9.11 G		
155.0	-137.91 G	-10.14 N	-0.11 S	0.00 A
150.0	-156.79 G	-9.81 в	-0.11 s	0.00 A
145.0	-174.89 G		-0.11 s	0.00 A
140.0		-9.42 T	-0.11 s	0.00 A
133.3	-193.78 G	-9.95 В 	-0.10 s	0.00 A
126.7	-214.63 G	-9.53 T	-0.11 s	0.00 A
,	-233.51 G	-9.34 B		
120.0	-251.77 G	-9.11 T	-0.09 s	0.00 A

			17	0074A
113.3			-0.07 s	0.00 A
106.7	-268.71 G	-9.05 J	-0.08 s	0.00 A
	-285.25 G	-8.98 V		
100.0	-300.88 G	 -9.02 J	-0.06 s	0.00 A
93.3	-300.88 G	-9.02 J	-0.10 s	0.00 A
06.7	-316.22 G	-9.02 J	0.06.6	0.00
86.7	-330.97 G	-9.11 J	-0.06 s	0.00 A
80.0			-0.09 s	0.00 A
70.0	-348.92 G	-10.05 J	-0.08 s	0.00 A
70.0	-369.91 G	-10.11 J		
60.0	-390.30 G	-10.17 J	-0.08 s	0.00 A
50.0	-550.50 G	-10.17 J	-0.07 s	0.00 A
40.0	-410.02 G	-10.28 J	0.07.5	0.00.4
40.0	-429.30 G	-10.38 J	-0.07 s	0.00 A
30.0			-0.06 s	0.00 A
20.0	-448.04 G	-10.51 J	-0.01 s	0.00 A
20.0	-466.44 G	-10.61 J	0.01 3	0.00 A
10.0	-484.29 G	 -10.74 J	-0.06 s	0.00 A
0.0	-404.29 G	-10.74 J	0.00 A	0.00 A

MAXIMUM INDIVIDUAL FOUNDATION LOADS: (kip)

		TOTAL		
NORTH	EAST	DOWN	UPLIFT	SHEAR
44.72 G	38.40 K	492.51 G	-437.68 M	44.72 G

MAXIMUM TOTAL LOADS ON FOUNDATION : (kip & kip-ft)

Н	ORIZONTA	L	DOWN		-OVERTURNING	7	TORSION
NORTH	EAST @	TOTAL 0.0		NORTH	EAST	TOTAL @ 0.0	
72.9 G	69.8 J	72.9 G	184.1 c	9326.1 G	8964.5 J	9326.1 G	-22.2 B

(c)2013 Guymast Inc. 416-736-7453 Latticed Tower Analysis (Unguyed)
Processed under license at: on: 15 dec 2017 at: 11:30:34 Sabre Towers and Poles

**************************** Service Load Condition ****************************

LOADING CONDITION A

60 mph wind with no ice. Wind Azimuth: 0♦

^{*} Only 1 condition(s) shown in full
* Some wind loads may have been derived from full-scale wind tunnel testing

170074A

SUPPRESS PRINTING

LOADS INPUT	FOR DISPL	THIS LO MEMBER FORCES	ADING FOUNDN LOADS	ALL		IMUMS MEMBER FORCES	
no	yes	yes	yes	no	no	no	no

MAXIMUM MAST DISPLACEMENTS:

ELEV	DEI	LECTIONS (f	t)	TILTS ((DEG)	TWIST
ft	NORTH	EAST	DOWN	NORTH	EAST	DEG
				1101111	2.5.	D2.0
195.0	0.696 G	-0.669 D	0.011 G	0.462 G	0.445 J	0.026 L
190.0	0.655 G	0.630 J	0.010 G	0.459 G	0.442 J	0.026 L
185.0	0.614 G	0.591 J	0.010 G	0.448 G	0.431 j	0.025 L
180.0	0.575 G	0.553 J	0.009 G	0.424 G	0.408 5	0.024 L
175.0	0.537 G	0.517 j	0.009 G	0.412 G	0.397 J	0.022 L
170.0	0.502 G	0.483 J	0.009 G	0.397 G	0.382 J	0.021 L
165.0	0.466 G	0.449 J	0.008 G	0.379 G	0.365 J	0.020 L
160.0	0.434 G	0.417 J	0.008 G	0.358 G	0.345 J	0.019 L
155.0	0.402 G	-0.387 D	0.008 G	0.342 G	0.329 J	0.018 L
150.0	0.372 G	-0.358 D	0.007 G	0.325 G	0.313 J	0.017 L
145.0	0.343 G	-0.331 D	0.007 G	0.306 G	0.295 J	0.016 L
140.0	0.317 G	-0.305 D	0.007 G	0.286 G	0.275 J	0.015 L
133.3	0.284 G	-0.273 D	0.006 G	0.266 G	-0.256 D	0.014 L
126.7	0.253 G	-0.243 D	0.006 G	0.245 G	-0.236 D	0.013 L
120.0	0.225 G	-0.216 D	0.005 G	0.223 G	-0.215 D	0.012 L
113.3	0.199 G	-0.191 D	0.005 G	0.207 G	-0.199 D	0.011 L
106.7	0.175 G	-0.168 D	0.005 G	0.190 G	-0.183 D	0.010 L
100.0	0.152 G	-0.147 D	0.004 G	0.173 G	-0.167 D	0.009 L
93.3	0.132 G	-0.127 D	0.004 K	0.157 G	-0.151 D	0.008 ∟
86.7	0.114 G	-0.109 D	0.004 K	0.141 G	-0.136 D	0.007 L
80.0	0.097 G	-0.093 D	0.003 K	0.125 G	-0.120 D	0.006 L
70.0	0.075 G	-0.072 D	0.003 K	0.109 G	-0.105 D	0.006 L
60.0	0.057 G	-0.054 D	0.003 K	0.093 G	-0.090 D	0.005 L
50.0	0.041 G	-0.039 D	0.002 K	0.078 G	-0.075 D	0.004 L
40.0	0.027 G	-0.026 D	0.002 K	0.062 G	-0.060 D	0.003 L

				170074A		
30.0	0.017 G	-0.016 D	0.002 D	0.046 G	-0.045 D	0.002 L
20.0	0.008 G	-0.008 D	0.001 D	0.031 G	-0.030 D	0.001 L
10.0	0.003 G	0.002 J	0.001 F	0.015 G	-0.015 D	-0.001 B
0.0	0.000 A	0.000 A	0.000 A	0.000 A	0.000 A	0.000 A

MAXIMUM TENSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG	HORIZ	BRACE
195.0	0.00.4	0.78 4	0.17 K	0.00 A
190.0	0.00 A	0.78 A	0.03 G	0.00 A
185.0	1.49 A	1.46 H 	0.09 A	0.00 A
180.0	4.99 A	1.56 B	0.26 K	0.00 A
175.0	8.29 A	1.84 B	0.10 A	0.00 A
	12.45 A	1.91 н		
170.0	15.83 A	2.24 A	0.02 C	0.00 A
165.0	20.55 A	2.44 н	0.09 A	0.00 A
160.0	24.66 A	 2.46 в	0.02 A	0.00 A
155.0	28.99 A	 2.91 н	0.05 A	0.00 A
150.0	34.02 A	2.72 B	0.05 A	0.00 A
145.0			0.05 A	0.00 A
140.0	38.61 A	2.70 H	0.04 A	0.00 A
133.3	43.52 A	2.77 H	0.04 A	0.00 A
126.7	48.68 A	2.73 H 	0.04 A	0.00 A
120.0	53.44 A	2.61 H	0.04 A	0.00 A
113.3	57.86 A	2.61 H	0.03 A	0.00 A
106.7	62.00 A	2.55 D	0.03 A	0.00 A
100.7	65.91 A	2.57 J		
	69.63 A	2.55 D	0.02 A	0.00 A
93.3	73.19 A	2.59 J	0.04 A	0.00 A
86.7	76.63 A	2.59 D	0.02 A	0.00 A
80.0	80.64 A	2.87 J	0.03 A	0.00 A
70.0	85.21 A	2.87 D	0.03 A	0.00 A
60.0	89.56 A	2.91 J	0.03 A	0.00 A
50.0			0.03 A	0.00 A
40.0	93.72 A	2.93 J	0.03 A	0.00 A
30.0	97.71 A	2.98 J	0.03 A	0.00 A
20.0	101.55 A	3.01 D	0.00 A	0.00 A
10.0	105.25 A	3.06 J	0.02 A	0.00 A
0.0	108.82 A	3.09 D	0.00 A	0.00 A

MAXIMUM COMPRESSION IN MAST MEMBERS (kip)

ELEV ft	LEGS	DIAG	HORIZ	BRACE

170074A

195.0			-0.05 E	0.00 A
190.0	-1.89 G	-0.95 G	0.00 A	0.00 A
185.0	-5.92 G	-1.34 B	-0.02 G	0.00 A
180.0	-9.67 G	-1.78 H	-0.12 E	0.00 A
175.0	-15.33 G	-2.14 H	-0.04 G	0.00 A
170.0	-20.51 G	-1.75 в	-0.01 I	0.00 A
	-25.91 G	-2.51 G	-0.04 G	0.00 A
165.0	-32.09 G	-2.31 B		
160.0	-37.44 G	-2.65 G	-0.01 G	0.00 A
155.0	-44.24 G	-2.86 в	-0.02 G	0.00 A
150.0	-49.74 G	-2.82 н	-0.02 G	0.00 A
145.0	-55.12 G	-2.66 в	-0.02 G	0.00 A
140.0	-60.68 G	-2.86 н	-0.03 G	0.00 A
133.3	-66.94 G	-2.71 н	-0.02 G	0.00 A
126.7	-72.58 G	-2.69 н	-0.02 G	0.00 A
120.0	-78.12 G	-2.60 B	-0.02 G	0.00 A
113.3			-0.02 G	0.00 A
106.7	-83.25 G	-2.61 D	-0.02 G	0.00 A
100.0	-88.32 G	-2.57 D	-0.01 G	0.00 A
93.3	-93.10 G	-2.60 D	-0.02 G	0.00 A
86.7	-97.85 G	-2.59 D	-0.01 G	0.00 A
80.0	-102.40 G	-2.63 J	-0.02 G	0.00 A
70.0	-108.04 G	-2.90 D	-0.02 G	0.00 A
60.0	-114.70 G	-2.93 J	-0.02 G	0.00 A
50.0	-121.22 G	-2.94 D	-0.02 G	0.00 A
40.0	-127.55 G	-2.99 D	-0.02 G	0.00 A
	-133.77 G	-3.01 D	-0.02 G -0.01 G	
30.0	-139.84 G	-3.06 J		0.00 A
20.0	-145.86 G	-3.09 D	0.00 G	0.00 A
10.0	-151.73 G	-3.15 J	-0.01 G	0.00 A
0.0			0.00 A	0.00 A

MAXIMUM INDIVIDUAL FOUNDATION LOADS: (kip)

	TOTAL			
NORTH	EAST	DOWN	UPLIFT	SHEAR
13.67 G	11.74 K	154.46 G	-110.40 A	13.67 G

MAXIMUM TOTAL LOADS ON FOUNDATION : (kip & kip-ft)

Н	ORIZONTA	\L	DOWN		OVERTURNING-		TORSION
NORTH	EAST	TOTAL		NORTH	EAST	TOTAL	
	Œ	0.0				@ 0.0	

21.0 20.2 21.0 60.7 2673.4 -2569.0 2673.4 -6.3 G J G D G D G B

MAT FOUNDATION DESIGN BY SABRE TOWERS & POLES

Tower Description 195' S3TL Series HD1

Customer MASTEC NETWORK SOLUTIONS GROUP

Project Number 170074 Date 12/19/2017 Engineer DJH

Overall Loads:			
Factored Moment (ft-kips)	9326.12	Anchor Bolt Count (per leg)	6
Factored Axial (kips)	184.06		
Factored Shear (kips)	72.90		
Individual Leg Loads:		Tower eccentric from mat (ft):	= 2
Factored Uplift (kips)	438.00		
Factored Download (kips)	493.00		
Factored Shear (kips)	45.00		
Width of Tower (ft)	23	Allowable Bearing Pressure (ksf)	4.00
Ultimate Bearing Pressure	8.00	Safety Factor	2.00
Bearing Φs	0.75		
5 . 5 . 6			
Bearing Design Strength (ksf)	6	Max. Factored Net Bearing Pressure (ksf)	5.15
Water Table Below Grade (ft)	999	N.C. Common National Control of the	00.47
Width of Mat (ft)	31.5	Minimum Mat Width (ft)	29.17
Thickness of Mat (ft)	1.5		
Depth to Bottom of Slab (ft)			
Bolt Circle Diameter (in)	13.25		
Top of Concrete to Top	58	1	
of Bottom Threads (in) Diameter of Pier (ft)	3.5	Minimum Pier Diameter (ft)	2.44
			The state of the s
Ht. of Pier Above Ground (ft)	0.5	Equivalent Square b (ft)	3.10
Ht. of Pier Below Ground (ft)	4.5		
Quantity of Bars in Mat Bar Diameter in Mat (in)	58 1.27		
Area of Bars in Mat (in²)	73.47	December 1 de de Conscience (in)	01-10
Spacing of Bars in Mat (in)	6.50	Recommended Spacing (in)	6 to 12
Quantity of Bars Pier Bar Diameter in Pier (in)	16		
Tie Bar Diameter in Pier (in)			
Spacing of Ties (in)	0.5		
		Minimum Pier A _s (in ²)	0.00
Area of Bars in Pier (in²)	12.57	-, ,	6.93
Spacing of Bars in Pier (in)	6.63	Recommended Spacing (in)	5 to 12
f'c (ksi)	4.5		
fy (ksi)	60		
Unit Wt. of Soil (kcf)	0.12		
Unit Wt. of Concrete (kcf)	0.15		
Volume of Concrete (yd ³)	60.47		

MAT FOUNDATION DESIGN BY SABRE TOWERS & POLES (CONTINUED)

_		
TWO-	Way	Shear:
1 44 0	vvay	Jiicai.

Average d (in)	13.73		
ϕv_c (ksi)	0.228	v _u (ksi)	0.225
$\phi V_c = \phi (2 + 4/\beta_c) f'_c^{1/2}$	0.342		
$\phi v_c = \phi(\alpha_s d/b_o + 2) f'_c^{1/2}$	0.293		
$\phi v_c = \phi 4 f'_c^{1/2}$	0.228		
Shear perimeter, b _o (in)	175.08		
$eta_{ extsf{c}}$	1		
Stability			

Stability:

Overturning Design Strength (ft-k)	11511.4	Factored Overturning Moment (ft-k)	9800.0
One-Way Shear:			
ϕV_c (kips)	591.9	V _u (kips)	572.2
Pier Design:			
Design Tensile Strength (kips)	678.6	Tu (kips)	438.0
ϕV_n (kips)	120.4	V _u (kips)	45.0
$\phi V_c = \phi 2(1 + N_u/(500A_g))f'_c^{1/2}b_w d$	59.2	•	
V _s (kips)	72.0	*** $V_s max = 4 f'_c^{1/2} b_w d (kips)$	378.7
Maximum Spacing (in)	11.15	(Only if Shear Ties are Required)	
Actual Hook Development (in)	12.46	Req'd Hook Development I _{dh} (in)	10.45
		*** Ref. ACI 11.5.5 & 11.5.6.3	

Anchor Bolt Pull-Out:

Rebar Development in Pad (in)

$\phi P_c = \phi \lambda (2/3) f'_c^{1/2} (2.8 A_{SLOPE} + 4 A_{FLAT})$	208.8	P _u (kips)	438.0
Pier Rebar Development Length (in)	44.63	Required Length of Development (in)	28.87
Flexure in Slab:			
ϕM_n (ft-kips)	4035.5	M _u (ft-kips)	4017.1
a (in)	3.05		
Steel Ratio	0.01416		
β_1	0.825		
Maximum Steel Ratio (ρ _t)	0.0197		
Minimum Steel Ratio	0.0018		

Required Development in Pad (in)

100.94

Condition	1 is OK, 0 Fails
Minimum Mat Width	1
Maximum Soil Bearing Pressure	1
Pier Area of Steel	1
Pier Shear	1
Two-Way Shear	1
Overturning	1
Anchor Bolt Pull-Out	1
Flexure	1
Steel Ratio	1
Length of Development in Pad	1
Interaction Diagram Visual Check	1
One-Way Shear	1
Hook Development	1
Minimum Mat Depth	1

20.50

DRILLED STRAIGHT PIER DESIGN BY SABRE TOWERS & POLES

Tower Description 195' S3TL Series HD1

Customer Name MASTEC NETWORK SOLUTIONS GROUP

Job Number 170074 Date 12/19/2017

Engineer DJH

Factored Uplift (kips)	438	Anchor Bolt Count (per leg)	6
Factored Download (kips)	493		
Factored Shear (kips)	45		
Ultimate Bearing Pressure	22.12		
Bearing Φs	0.75		
Bearing Design Strength (ksf)	16.59		
Water Table Below Grade (ft)	999		
Bolt Circle Diameter (in)	13.25		
Top of Concrete to Top			
of Bottom Threads (in)	58		
Pier Diameter (ft)	6	Minimum Pier Diameter (ft)	2.44
Ht. Above Ground (ft)	0.5		
Pier Length Below Ground (ft)	26		
Quantity of Bars	26		
Bar Diameter (in)	1	*	
Tie Bar Diameter (in)	0.5		
Spacing of Ties (in)	12		
Area of Bars (in ²)	20.42	Minimum Area of Steel (in ²)	20.36
Spacing of Bars (in)	7.73		
f'c (ksi)	4.5		
fy (ksi)	60		
, ()			
Unit Wt. of Concrete (kcf)	0.15		
Download Friction Φs	0.75		
Uplift Friction Φs	0.75		
Volume of Concrete (yd3)	27.75		
Skin Friction Factor for Uplift	1	Length to Ignore Download (ft)	
Ignore Bottom Length in Download?		0	
Depth at Bottom of Layer (ft)	Ult. Skin Friction (ksf)	(Ult. Skin Friction)*(Uplift Factor)	γ (kcf)
2	0.00	0.00	0.12
7	0.30	0.30	0.12
14	1.50	1.50	0.135
27	1.00	1.00	0.135
0	0.00	0.00	0
0	0.00	0.00	0
0	0.00	0.00	0
0	0.00	0.00	0
0	0.00	0.00	0
0	0.00	0.00	0
Download			

Download:

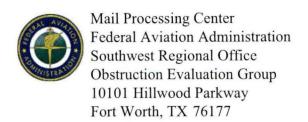
Factored Net Weight of Concrete (kips)	2.5	1
Bearing Design Strength (kips)	469.1	1
Skin Friction Design Strength (kips)	339.3	1
Download Design Strength (kips)	808.4	Factored Net Download (kips)

495.5

DRILLED STRAIGHT PIER DESIGN BY SABRE TOWERS & POLES (CONTINUED)

Uplift:

Nominal Skin Friction (kips)	452.4		
Wc, Weight of Concrete (kips)	112.4		
W _R , Soil Resistance (kips)	1243.0		
ФsWr+0.9Wc (kips)	1033.4	*	
Uplift Design Strength (kips)	440.4	Factored Uplift (kips)	438.0
Pier Design:			
Design Tensile Strength (kips)	1102.7	Tu (kips)	438.0
φV _n (kips)	371.2	V _u (kips)	45.0
$V_c = \phi 2(1 + N_u/(500A_g)) f'_c^{1/2} b_w d \text{ (kips)}$	371.2		


*** $V_s max = 4 f'_c^{1/2} b_w d (kips)$ V_s (kips) 0.0 1112.8 (Only if Shear Ties are Required)
*** Ref. ACI 11.5.5 & 11.5.6.3 Maximum Spacing (in) 6.50

Anchor Bolt Pull-Out:

$\phi P_c = \phi \lambda (2/3) f'_c^{1/2} (2.8 A_{SLOPE} + 4 A_{FLAT})$	613.1	P _u (kips)	438.0
Rebar Development Length (in)	29.63	Required Length of Development (in)	N/A

Condition	1 is OK, 0 Fails
Download	1
Uplift	1
Area of Steel	1
Shear	1
Anchor Bolt Pull-Out	1
Interaction Diagram Visual Check	1

EXHIBIT E-1 FAA APPROVAL

Issued Date: 01/05/2018

Dave Cundiff - Dana Irvin AT&T Mobility 208 S. Akard St., 1012.4 Dallas, TX 75202

** DETERMINATION OF NO HAZARD TO AIR NAVIGATION **

The Federal Aviation Administration has conducted an aeronautical study under the provisions of 49 U.S.C., Section 44718 and if applicable Title 14 of the Code of Federal Regulations, part 77, concerning:

Structure:

Antenna Tower Harned

Location:

Harned, KY

Latitude:

37-45-52.73N NAD 83

Longitude:

86-23-17.94W

Heights:

781 feet site elevation (SE)

199 feet above ground level (AGL) 980 feet above mean sea level (AMSL)

This aeronautical study revealed that the structure does not exceed obstruction standards and would not be a hazard to air navigation provided the following condition(s), if any, is(are) met:

It is required that FAA Form 7460-2, Notice of Actual Construction or Alteration, be e-filed any time the project is abandoned or:

	At least 10 days prior to start of construction (7460-2, Part 1)		
\mathbf{X}	Within 5 days after the construction reaches its greatest height	(7460-2,	Part 2

Based on this evaluation, marking and lighting are not necessary for aviation safety. However, if marking/lighting are accomplished on a voluntary basis, we recommend it be installed in accordance with FAA Advisory circular 70/7460-1 L Change 1.

Any height exceeding 199 feet above ground level (980 feet above mean sea level), will result in a substantial adverse effect and would warrant a Determination of Hazard to Air Navigation.

This determination expires on 07/05/2019 unless:

- (a) the construction is started (not necessarily completed) and FAA Form 7460-2, Notice of Actual Construction or Alteration, is received by this office.
- (b) extended, revised, or terminated by the issuing office.
- (c) the construction is subject to the licensing authority of the Federal Communications Commission (FCC) and an application for a construction permit has been filed, as required by the FCC, within

6 months of the date of this determination. In such case, the determination expires on the date prescribed by the FCC for completion of construction, or the date the FCC denies the application.

NOTE: REQUEST FOR EXTENSION OF THE EFFECTIVE PERIOD OF THIS DETERMINATION MUST BE E-FILED AT LEAST 15 DAYS PRIOR TO THE EXPIRATION DATE. AFTER RE-EVALUATION OF CURRENT OPERATIONS IN THE AREA OF THE STRUCTURE TO DETERMINE THAT NO SIGNIFICANT AERONAUTICAL CHANGES HAVE OCCURRED, YOUR DETERMINATION MAY BE ELIGIBLE FOR ONE EXTENSION OF THE EFFECTIVE PERIOD.

This determination is based, in part, on the foregoing description which includes specific coordinates, heights, frequency(ies) and power. Any changes in coordinates, heights, and frequencies or use of greater power, except those frequencies specified in the Colo Void Clause Coalition; Antenna System Co-Location; Voluntary Best Practices, effective 21 Nov 2007, will void this determination. Any future construction or alteration, including increase to heights, power, or the addition of other transmitters, requires separate notice to the FAA. This determination includes all previously filed frequencies and power for this structure.

This determination does include temporary construction equipment such as cranes, derricks, etc., which may be used during actual construction of the structure. However, this equipment shall not exceed the overall heights as indicated above. Equipment which has a height greater than the studied structure requires separate notice to the FAA.

This determination concerns the effect of this structure on the safe and efficient use of navigable airspace by aircraft and does not relieve the sponsor of compliance responsibilities relating to any law, ordinance, or regulation of any Federal, State, or local government body.

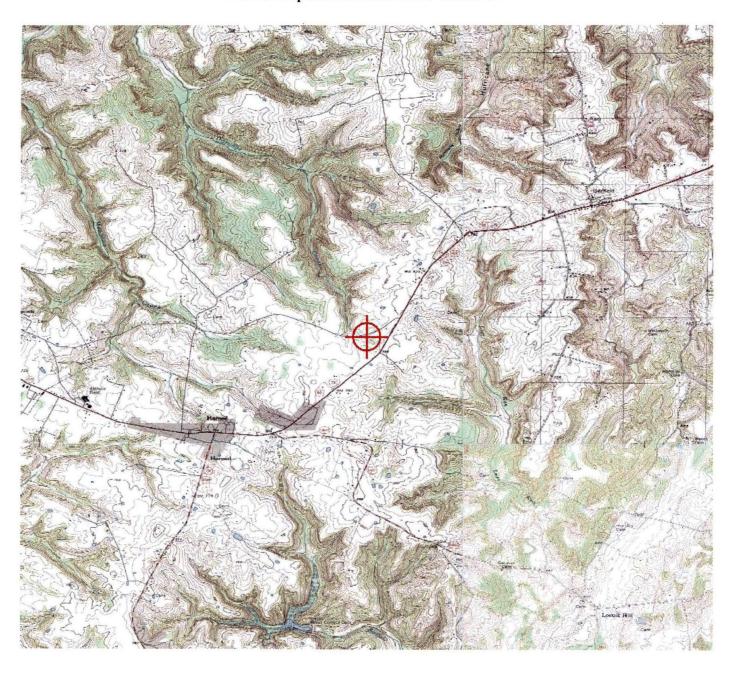
A copy of this determination will be forwarded to the Federal Communications Commission (FCC) because the structure is subject to their licensing authority.

If we can be of further assistance, please contact our office at (202) 267-4525, or david.maddox@faa.gov. On any future correspondence concerning this matter, please refer to Aeronautical Study Number 2017-ASO-16999-OE.

Signature Control No: 341164279-352418942

(DNE)

David Maddox Specialist


Attachment(s) Frequency Data Map(s)

cc: FCC

Frequency Data for ASN 2017-ASO-16999-OE

LOW	HIGH	FREQUENCY	EDD	ERP
FREQUENCY	FREQUENCY	UNIT	ERP	UNIT
6	7	GHz	55	dBW
6	, 7 ·	GHz	42	dBW
10	11.7	GHz	55	dBW
10	11.7	GHz	42	dBW
17.7	19.7	GHz	55	dBW
17.7	19.7	GHz	42	dBW
21.2	23.6	GHz	55	dBW
21.2	23.6	GHz	42	dBW
614	698	MHz	1000	W
614	698	MHz	2000	W
698	806	MHz	1000	W
806	901	MHz	500	W
806	824	MHz	500	W
824	849	MHz	500	W
851	866	MHz	500	W
869	894	MHz	500	W
896	901	MHz	500	W
901	902	MHz	7	W
929	932	MHz	3500	W
930	931	MHz	3500	W
931	932	MHz	3500	W
932	932.5	MHz	17	dBW
935	940	MHz	1000	W
940	941	MHz	3500	W
1670	1675	MHz	500	W
1710	1755	MHz	500	W
1850	1910	MHz	1640	W
1850	1990	MHz	1640	W
1930	1990	MHz	1640	W
1990	2025	MHz	500	W
2110	2200	MHz	500	W
2305	2360	MHz	2000	W
2305	2310	MHz	2000	W
2345	2360	MHz	2000	W
2496	2690	MHz	500	W

TOPO Map for ASN 2017-ASO-16999-OE

EXHIBIT F-1 KENTUCKY AIRPORT ZONING COMMISSION APPROVAL

KENTUCKY AIRPORT ZONING COMMISSION

MATTHEW BEVIN Governor

421 Buttermilk Pike Covington, KY 41017 www.transportation.ky.gov 859-341-2700

January 5, 2018

APPROVAL OF APPLICATION

APPLICANT: John Monday John Monday 3300 E. Renner Rd B3132 Richardson, TX 75082

SUBJECT: AS-014-193-2017-070

STRUCTURE:

Antenna

LOCATION:

Harned, KY

COORDINATES: 37° 45' 52.73" N / 86° 23' 17.94" W

HEIGHT:

199' AGL/980' AMSL

The Kentucky Airport Zoning Commission has approved your application for a permit to construct 199' AGL/ 980' AMSL Antenna near Harned, KY 37° 45' 52.73" N / 86° 23' 17.94" W.

This permit is valid for a period of 18 Month(s) from its date of issuance. If construction is not completed within said 18-Month period, this permit shall lapse and be void, and no work shall be performed without the issuance of a new permit.

A copy of the approved application is enclosed for your files.

Obstruction Marking/Lighting are not required.

John Houlihan Administrator

KENTUCKY AIRPORT ZONING COMMISSION

MATTHEW BEVIN
Governor

421 Buttermilk Pike Covington, KY 41017 www.transportation.ky.gov 859-341-2700

CONSTRUCTION/ALTERATION STATUS REPORT

January 5, 2018

AERONAUTICIAL STUDY NUMBER: AS-014-193-2017-070

John Monday John Monday 3300 E. Renner Rd B3132 Richardson, TX 75082

This concerns the permit which was issued to you by the Kentucky Airport Zoning Commission on January 5, 2018. This permit is valid for a period of 18 Month(s) from its date of issuance. If construction is not completed within the said 18-Month period, this permit shall lapse and be void, and no work shall be performed without the issuance of a new permit. When appropriate, please indicate the status of the project in the place below and return this letter to John Houlihan, Administrator, Kentucky Airport Zoning Commission, 421 Buttermilk Pike, Covington, KY, 41017. 859-341-2700.

STRUCTURE: Antenna LOCATION: Harned, KY

COORDINATES: 37° 45' 52.73" N / 86° 23' 17.94" W

HEIGHT: 199' AGL /980' AMSL

CONSTRUCTION/ALTERATION STATUS

1.	The project () is abandoned. () is not abandoned.
2.	Construction status is as follows: Structure reached its greatest height offt. AGL
	Date construction was completed.
	Type of obstruction marking/painting.
	Type of obstruction lighting.
	As built coordinates.
	Miscellaneous Information.
	DATE
	SIGNATURE/TITLE

KENTUCKY TRANSPORTATION CABINET

TC 55-2 Rev. 06/2016 Page 2 of 2

KENTUCKY AIRPORT ZONING COMMISSION

APPLICATION FOR PERMIT TO CONSTRUCT OR ALTER A STRUCTURE

APPLICANT (name)	PHONE	FAX	KY AERONAUTICAL			
John Monday	855-699-7073	972-907-1131	AS-014-183-	-2017-670		
ADDRESS (street)	CITY		STATE	ZIP		
3300 E. Renner Road, B3132	Richardson		TX	75082		
APPLICANT'S REPRESENTATIVE (name)	PHONE	FAX				
Roy Johnson	502-445-2475	502-222-4266				
ADDRESS (street)	CITY		STATE	ZIP		
3605 Mattingly Road	Buckner		КУ	40010		
	APPLICATION FOR X New Construction Alteration Existing DURATION Permanent Temporary (months days)			WORK SCHEDULE Start End TBD		
TYPE Crane Building	MARKING/PAINTIN	IG/LIGHTING PREFE	RRED			
X Antenna Tower	_	int White- med				
Power Line Water Tank Landfill Other	X Dual- red & med Other	dium intensity white	Dual- red & hi	igh intensity white		
LATITUDE	LONGITUDE		DATUM X NAD	83 NAD27		
37° 45′ 52·73 ″	86° 23′ 17	7.94 "	Other			
NEADECT VENTUCKY	NEAREST KENTUCK	Y PUBLIC USE OR M	ILITARY AIRPORT			
City Harned County Breckenridge	Breckenridge (***			
SITE ELEVATION (AMSL, feet) 781	TOTAL STRUCTURE HEIGHT (AGL, feet) CURRENT (FAA aeronautical study #)					
OVERALL HEIGHT (site elevation plus to			PREVIOUS (FAA ae			
1101 980	•		•			
DISTANCE (from nearest Kentucky public use or Military airport to structure) 2.79 NM PREVIOUS (KY aeronautical study #						
DIRECTION (from nearest Kentucky pub	lic use or Military air	port to structure)				
Southeast						
DESCRIPTION OF LOCATION (Attach US	GS 7.5 minute quadr	angle map or an air	port layout drawing	with the precise site		
marked and any certified survey.)						
14 a	nd Quad attached					
DESCRIPTION OF PROPOSAL	EPSA STORY	4		7		
AT&T proposes to construct a 305' cell tower with a 15' lightning rod for an overall height of 320'.						
FAA Form 7460-1 (Has the "Notice of Co	onstruction or Altera	tion" been filed with	the Federal Aviation	n Administration?)		
X No Yes, when?						
CERTIFICATION (I hereby certify that all	the above entries, n	nade by me, are true	, complete, and corr	ect to the best of		
my knowledge and belief.)						
PENALITIES (Persons failing to comply with KRS 183.861 to 183.990 and 602 KAR 050 are liable for fines and/or imprisonment as set forth in KRS 183.990(3). Noncompliance with FAA regulations may result in further penalties.)						
NAME TITLE	CICALATURE	0	DATE	ner penantes.		
Michelle Ward Sr. Real Estate M	gr. Sidnatoke	Lana Word	07/03/17			
COMMISSION ACTION Chairperson, KAZC Administrator, KAZC						
(X)	Administrat	UI, NAZC		10		
Approved SIGNATURE Disapproved	In		DATE 1-6	10		
1/						